
The Book of C
Release 2022.08

Joel Sommers

May 07, 2024

CONTENTS

1 Introduction: The C Language 3

2 Getting your feet wet in the C 5
2.1 Hello, somebody . 5
2.2 Hello, clang . 7

3 Basic Types and Operators 11
3.1 Integer types . 11
3.2 Floating point types . 14
3.3 Boolean type . 15
3.4 Basic syntactic elements . 16

4 Control Structures 23
4.1 if Statement . 23
4.2 The conditional expression (ternary operator) . 24
4.3 switch statement . 25
4.4 while loop . 25
4.5 do-while loop . 26
4.6 for loop . 26

5 Arrays and Strings 31
5.1 Arrays . 31
5.2 Multidimensional Arrays . 34
5.3 C Strings . 35

6 Aggregate Data Structures 41
6.1 The C struct . 41

7 Functions 45
7.1 Function syntax . 45
7.2 Data types for parameters and return values . 47
7.3 Storage classes, the stack and the heap . 53

8 Pointers and more arrays 55
8.1 Pointers . 56
8.2 Advanced C Arrays and Pointer Arithmetic . 61
8.3 Dynamic memory allocation . 62

9 Program structure and compilation 71
9.1 The compilation process . 71
9.2 Invariant testing and assert . 78

i

10 C Standard Library Functions 79
10.1 Precedence and Associativity . 79
10.2 Standard Library Functions . 80
10.3 stdio.h . 80
10.4 ctype.h . 82
10.5 string.h . 82
10.6 stdlib.h . 83

11 Thanks 85

12 Copyright 87

13 Indices and tables 89

Bibliography 91

Index 93

ii

The Book of C, Release 2022.08

This book is also available in PDF form.

Fig. 1: New Harbor, Maine, USA. Photo by J. Sommers.

Preface

Get ready to learn one of the most influential programming languages ever developed. If you know some
Java, you'll find C's syntax familiar (Java's syntax is based on C) and many of the same control structures.
That familiarity can be deceptive, though. C is rather unforgiving and will allow you (nay, give you the
weapon) to shoot yourself in the foot1. On the other hand, you'll develop a much better understanding of
computer systems as your knowledge of C grows. Have fun, and good luck!

This book is loosely based on the "Essential C" document written by Nick Parlante at Stanford University.
The original document is available at http://cslibrary.stanford.edu/101/. The Essential C document was last
updated in 2003, which is one reason why this document exists. Programming languages and compilers
change, and I wanted to take the good work that Nick had done and make several updates to modernize
the text.

The notice reproduced below is copied from Essential C:

Stanford CS Education Library. This is document #101, Essential C, in the Stanford CS Education
Library. This and other educational materials are available for free at http://cslibrary.stanford.
edu/. This article is free to be used, reproduced, excerpted, retransmitted, or sold so long as this
notice is clearly reproduced at its beginning.

1 http://www.toodarkpark.org/computers/humor/shoot-self-in-foot.html

CONTENTS 1

http://cslibrary.stanford.edu/101/
http://cslibrary.stanford.edu/
http://cslibrary.stanford.edu/
http://www.toodarkpark.org/computers/humor/shoot-self-in-foot.html

The Book of C, Release 2022.08

2 CONTENTS

CHAPTER

ONE

INTRODUCTION: THE C LANGUAGE

C is a professional programmer's language. It is a systems implementation language, and was originally
designed by Dennis Ritchie at Bell Labs in the 1960s. Prior to the development of C, most operating systems
were developed in assembly language1! The C language (and its predecessor, the B language) were designed
to provide some level of portability of the operating system source code (i.e., it could be recompiled for a
new processor architecture), while still allowing a programmer to manipulate low-level resources such as
memory and I/O devices. If you are interested in some the history behind the development of UNIX, see
[Evolution] by Dennis Ritchie.

C was designed to get in one's way as little as possible. It is a high-level programming language (i.e., not
assembly), but is quite minimal in design and scope. Its minimalism can make it feel difficult to work with.
Its syntax is somewhat terse, and its runtime environment does not contain the sort of "guardrails" available
in other programming languages such as Python or Java. There are no classes, objects, or methods, only
functions. C's type system and error checks exist only at compile-time. The compiled code runs with no
safety checks for bad type casts, bad array indexes, or bad memory accesses. There is no garbage collector
to manage memory as in Java and Python. Instead, the programmer must manage heap memory manually.
All this makes C fast but fragile.

Some languages, like Python, are forgiving. The programmer needs only a basic sense of how things work.
Errors in the code are flagged by the compile-time or run-time system, and a programmer can muddle
through and eventually fix things up to work correctly. The C language is not like that. The C programming
model assumes that the programmer knows exactly what he or she wants to do, and how to use the language
constructs to achieve that goal. The language lets the expert programmer express what they want in the
minimum time by staying out of their way.

As a result, C can be hard to work with at first. A feature can work fine in one context, but crash in another.
The programmer needs to understand how the features work and use them correctly. On the other hand,
the number of features is pretty small, and the simplicity of C has a certain beauty to it. What seem like
limitations at first can feel liberating as you gain more experience with the language.

As you start to learn and use C, a good piece of advice is to just be careful. Don't write code that you don't
understand. Debugging can be challenging in C, and the language is unforgiving. Create a mental (or real)
picture of how your program is using memory. That's good advice for writing code in any language, but in
C it is critical.

C's popularity

Although introduced over 40 years ago, C is one of the most popular programming languages in use
today2.Moreover, C's syntax has highly influenced the design of other programming languages (Java

1 Take a moment and consider how difficult it must have been to develop a new OS!

3

The Book of C, Release 2022.08

syntax is largely based on C). All modern operating systems today are written largely in C (or a combi-
nation of C and C++) due to the fact that low-level resources (memory and I/O devices) can be directly
manipulated with a minimum of assembly.

This book is intended to be a short, though mostly complete introduction to the C programming language. A
(generally) C99-capable compiler assumed since the book introduces various features from the C99 revision
of the language [C99]. For an in-depth treatment of the language and language features, there are two other
books to recommend. The mostly widely used C book is one simply referred to as "K&R", written by the
designers of the language, Brian Kernighan and Dennis Ritchie [KR]. It is an excellent (though somewhat
dated) reference to the language. Another excellent, if lengthy, introduction to C can be found in Stephen
Prata's C Primer Plus [CPP]. It contains a more modern treatment of C than K&R, with lots of detail and
exercises.

References

2 See https://www.tiobe.com/tiobe-index/ for one ranking of programming language popularity.

4 Chapter 1. Introduction: The C Language

https://www.tiobe.com/tiobe-index/

CHAPTER

TWO

GETTING YOUR FEET WET IN THE C

In this first chapter, we'll get wet in the C by way of a tutorial that examines a variety of topics that are
discussed in depth in later chapters. Where appropriate, pointers to later sections are given if you want to
read a bit more as you work through the following examples.

2.1 Hello, somebody

We first start out by examining a simple "hello, world"-style program: a program that simply echoes (prints)
what ever is typed on the keyboard, until end-of-file is reached. Here is the code:

1 #include <stdio.h>
2 #include <stdlib.h>
3

4 int main() {
5 int character;
6 character = getchar();
7 while (character != EOF) {
8 putchar(character);
9 character = getchar();

10 }
11 return EXIT_SUCCESS;
12 }

C and stdio when targeting microcontrollers

When writing C to compile and run on embedded devices (e.g., microcontrollers) there are generally no
I/O functions like printf, fgets, and the like. Any I/O is typically either bit- or byte-/character-oriented.
In this first example program, we are using the built-in getchar and putchar functions, which are
character-oriented. These functions are also not typically available as-is in microcontroller programming
environments, but they at least have some similarity to how I/O works in these constrained settings.

Since this may be the first C program you've seen, we'll walk through it line by line:

1. The first line (#include <stdio.h>) tells the C compiler that we intend to use functions
that are in the C standard library and declared in a header file called stdio.h. This line
is (somewhat) analogous to saying import in Python or Java. The file stdio.h contains
declarations for input/output functions in C, such as getchar and putchar, which are used
to print a character to the console or read a character from the keyboard, respectively. The
stdio.h header also has declarations for the more commonly used printf and fgetswhich

5

The Book of C, Release 2022.08

are used in generic C programs, as well as many other related functions. Including those
declarations in our program lets the compiler know the type signatures of the functions
we want to use (i.e., the data types of the function parameters, and the return type). See
preprocessing for more discussion of #include files.

2. The second line includes another source of standard function declarations and definitions
(#include <stdlib.h>). We include this file specifically for the EXIT_SUCCESS value re-
turned on the last line of the main function (as discussed below).

3. Whitespace is generally ignored in C, just as it is ignored in Java.

4. Line 4 starts a function called main, which is the function in which every C program must
start. If you don't define a main function, the compiler will complain loudly. Notice that
the return value of main is of type int. In UNIX-based systems (and C), it is common
for functions to return an integer value indicating whether the function "succeeded" or
not. Weirdly enough 0 usually means "success" and some non-zero value (sometimes 1,
or -1, or some other value) means "failure". The symbol EXIT_SUCCESS is defined (inside
<stdlib.h>) to be 0; there is also a symbol EXIT_FAILURE that is defined to be 1. If you
look at line 11, you'll see that we unconditionally return EXIT_SUCCESS to indicate that the
program successfully completes. (The main function can also take two parameters; see the
main function for more about main.)

5. On line 5, we declare a variable called character of type int. This might look like an
ordinary declaration you'd find in Java, but what may not be obvious is that this line only
declares the variable: there is no automatic initialization of variables in C. There is no way
to know what would be stored in character following that line of code since we did not
explicitly assign it to anything --- it will hold whatever random character that may have
resided in the memory location occupied by character prior to its being brought to life.

6. On line 6, we call the built-in function getchar to read a character from the keyboard
(technically, from the input stream stdin). The program will pause until a character is
typed1. Once something is typed, the integer representation of the character will be assigned
to the variable character.

7. Line 7 starts a while loop, in which we will continue to loop until the program reaches
"end of file" (EOF) on the input stream. If running this program interactively, you can give
an EOF on the keyboard by typing Ctrl+D. The EOF constant comes from the <stdio.h>
header file (see description for line 1, above).

8. Since we did not get EOF, we can write the character most recently read out to the console
(stdout) using the putchar function.

9. At the end of the loop, we read the next character from the keyboard for the next time the
while loop condition is evaluated.

11. See the description of line 5, above.

1 This is not strictly true in practice. stdin and stdout are both buffered I/O streams, so if you just type a single character (like 'a')
you will not see any output. If you type a character plus return/enter, then you will see some output because the newline character
(\n, emitted from typing return) implicitly flushes the input and output streams. On UNIX-based computer systems, you can use the
setbuf or fflush built-in functions (among other possibilities) to either force I/O to be unbuffered, or to flush input and/or output
streams.

6 Chapter 2. Getting your feet wet in the C

The Book of C, Release 2022.08

2.1.1 An aside on C strings and string-based I/O

In ordinary C programs, you'll often used string-based I/O functions instead of character-based ones. Strings
in C are very much unlike strings in Java or Python: they are simply arrays of characters that are terminated
with a "null termination character", which is written '\0'. Notice single quotes are used for literal characters
in C and double quotes are used for literal strings. You can read more later in this book about C strings.

Printing strings is typically handled using the printf function, and there are a variety of functions used for
reading strings (e.g., fgets, scanf). An example printf line that could replace line 8 in the program above
is printf("%c", character);. Notice that the first argument to printf is a string (double quotes), which
defines a format template. The special character sequence %c indicates to printf that a character should be
substituted at that point in the template; the character to be substituted is just the second argument to the
function. Note that two other common printf formatting placeholders are %s for printing a string, %d for
printing a decimal integer, and %f for printing a floating point number. Read more about printf in the stdio
reference.

2.2 Hello, clang

Now that we've gone through the hello program in some gory detail, let's compile and run it. Just like
Java, C requires an explicit compilation step to produce an executable program. Unlike Java, however, the
program produced by the compiler does not contain "byte code", it contains real executable instructions for
the processor on which you're running the compiler. So, if you happen to be compiling on a 64-bit Linux
system using an Intel-based processor, the program produced by the C compiler will contain raw Intel
x86_64 instructions2.

All the examples in this book will use a compiler called clang, and all examples will use the command line
(in particular, the bash shell). clang is available on most recent Linux systems and on MacOS X3. If clang
is unavailable, you can also use the gcc compiler. The reason we favor clang is that the error messages
produced by clang are far, far superior to the cryptic nonsense spewed by gcc.

The basic recipe for using clang is:

clang -g -Wall -std=c99 -o <executablename> <sourcefiles>

Notice that there are a few command-line flags/options given:

• -g tells the compiler to include debugging symbols in the compiled program. This is a good thing to
do because it will enable you to use a symbolic debugger like gdb, if necessary.

• -Wall tells the compiler to turn on all warnings. If clang detects something odd or suspicious about
your code, it will say so. Turning on this flag is a ridiculously good idea. If you enjoy the feeling of
someone yelling at you, you can even turn on the -pedantic flag.

• -std=c99 tells the compiler to turn on "C99" features, or language features that were introduced in a
1999 revision of the C programming language standard. We will use various C99 constructs in this
book, so you should always turn on this flag4.

• -o <executablename> tells the compiler how to name the file that is produced as an executable
program. You should replace <executablename> with something more meaningful (as shown in the
example below).

• <sourcefiles> comes last, and can be one or more .c files containing C source code.

2 The file containing the instructions is in a format known as ELF: http://en.wikipedia.org/wiki/Executable_and_Linkable_Format
3 Don't look for any examples related to Windows or Visual C in this book: they don't exist.
4 By default, recent versions of clang operate in a "modern" mode (C99 or C11). To be safe, however, you should specify the C

standard to which the code is written.

2.2. Hello, clang 7

http://en.wikipedia.org/wiki/Executable_and_Linkable_Format

The Book of C, Release 2022.08

a.out is the default executable file name produced by clang

If you do not supply an output executable name using the -o flag, clang will create a file named a.out.
Which is very, very weird, right? There is, of course, a history behind this file name5.

For example, with the "hello, someone" example above, we might compile and run the program as follows:

$ clang -g -Wall -std=c99 -o echo echo.c
$./echo
hello,
hello,
world!
world!
e
e
c
c
h
h
o
o

When invoked like this, clang will perform all three basic phases of compilation (see compilation phases for
details): preprocessing, compiling, and linking. The final result is a binary executable program that can be
executed on a particular processor architecture (e.g., Intel x86 or x86_64).

2.2.1 When clang goes "bang!"

Of course, not all our wonderful source code will compile and run correctly on the first go. Let's modify
our "echo" program to introduce a bug and see what happens. Specifically, we will modify two lines: on
line 5 we will remove the semicolon at the end of the line, and on line 8, we will remove the argument to
putchar. Here's what clang's output looks like:

echo.c:5:18: error: expected ';' at end of declaration
int character

^
;

echo.c:8:17: error: too few arguments to function call, expected 1, have 0
putchar();
~~~~~~~ ^

2 errors generated.

Clang helpfully tells us that we're missing the semicolon (the 5:18 means the fifth line and 18th character on
that line), and that there was an incorrect number of arguments to putchar6.

5 http://en.wikipedia.org/wiki/A.out
6 If the terminal in which you invoke clang is capable, it will even color-highlight the output to help draw your attention to various

errors and warnings.

8 Chapter 2. Getting your feet wet in the C

http://en.wikipedia.org/wiki/A.out


The Book of C, Release 2022.08

2.2.2 clang versus gcc

If you use gcc instead of clang (perhaps because clang is not available for some reason), the command-line
options are exactly the same. Nothing needs to change there. The key difference you will notice between
gcc and clang is in the error and warning messages. If you thought the error messages above weren't very
good, ponder the following output of gcc for the same example:

echo.c: In function 'main':
echo.c:6:5: error: expected '=', ',', ';', 'asm' or '__attribute__' before 'character'

6 | character = getchar();
| ^~~~~~~~~

echo.c:6:5: error: 'character' undeclared (first use in this function)
echo.c:6:5: note: each undeclared identifier is reported only once for each function it␣
↪→appears in
In file included from code/echo.c:1:
echo.c:8:9: error: expected expression before ',' token

8 | putchar();
| ^~~~~~~

It's just not quite as nice as what clang prints. If possible, a recommendation is to use clang, but gcc is very
widely used and you're likely to use it at some point. Advice: read the error messages very carefully!

Exercises

1. Modify the above program to use string-based I/O using fgets and printf. To use fgets, you'll need
to declare an array of char with some reasonable size. If you name the array string, the call to fgets
should be fgets(string, 64, stdin);.

2. Modify the while loop in the character-oriented version of the echo program to convert any letters to
upper case. if statements work similarly as they do in Java, and you can compare variables storing
characters to literal characters using standard operators (e.g., ==, <=, etc.)

3. Revisit your fabulous time in COSC 101 by writing a program that asks for a dog's name, its age in
human years, then prints its age in dog years (human years multiplied by 7). A couple hints to help
accomplish this:

• If you use string-based I/O, you can use fgets to collect each input, but note that you'll need to
convert the dog age to an integer (you can just do the computations as integers). You can use the
atoi function to convert a string to an integer; atoi takes a C string as a parameter and returns an
int. You'll need to #include <stdlib.h> to use the atoi function. To format a decimal integer
for output with printf, you can use the %d placeholder in the printf format string (i.e., the first
parameter).

• If you use character-based I/O, you could collect input using getchar until receiving a newline
character. As you collect digits, you could convert them directly to an integer, or populate a
string and use atoi as noted above. Once you do the relevant computation (multiply by 7), you
can consider how to take the integer dog years value and print it character by character using
putchar. Hint: use integer division and modulus (mod - %) to extract individual digits, starting
with the left-most (largest placeholder).

• Note that arithmetic operators in C are virtually identical to those available in Java (and Python).
There is no ** operator as in Python to do exponentiation, but you certainly shouldn't need that
to compute the dog's age.

2.2. Hello, clang 9



The Book of C, Release 2022.08

10 Chapter 2. Getting your feet wet in the C



CHAPTER

THREE

BASIC TYPES AND OPERATORS

C provides a standard, though minimal, set of basic data types. Sometimes these are called "primitive" types.
This chapter focuses on defining and showing examples of using the various types, including operators and
expressions that can be used. More complex data structures can be built up from the basic types described
below, as we will see in later chapters.

3.1 Integer types

There are several integer types in C, differing primarily in their bit widths and thus the range of values
they can accommodate. Each integer type can also be signed or unsigned. Signed integer types have a range
−2width−1..2width−1

− 1, and unsigned integers have a range 0..2width
− 1. There are five basic integer types:

char: One ASCII character
The size of a char is almost always 8 bits, or 1 byte. 8 bits provides a signed range of -128..127 or an
unsigned range is 0..255, which is enough to hold a single ASCII character1. char is also required to
be the "smallest addressable unit" for the machine --- each byte in memory has its own address.

short: A "small" integer
A short is typically 16 bits, which provides a signed range of -32768..32767. It is less common to use
a short than a char, int, or something larger.

int: A "default" integer size
An int is typically 32 bits (4 bytes), though it is only guaranteed to be at least 16 bits. In typical
microcontroller environments, an int is almost always 16 bits! It is defined to be the "most comfortable"
size for the computer architecture for which the compiler is targetted. If you do not really care about
the range for an integer variable, declare it int since that is likely to be an appropriate size which
works well for that machine.

long: A large integer
A least 32 bits. On a 32-bit machine, it will usually be 32 bits, but on a 64 bit machine, it will usually
be 64 bits.

long long
Modern C compilers also support long long as an integer type, which is a 64-bit integer.

The integer types can be preceded by the qualifier unsignedwhich disallows representing negative numbers
and doubles the largest positive number representable. For example, a 16 bit implementation of short can
store numbers in the range -32768..32767, while unsigned short can store 0..65535.

Although it may be tempting to use unsigned integer types in various situations, you should generally just
use signed integers unless you really need an unsigned type. Why? The main reason is that it is common

1 Non-ASCII characters can also be represented in C, such as characters in Cyrillic, Hangul, Simplified Chinese, and Emoji, but
not in a single 8-bit data type. See http://en.wikipedia.org/wiki/Wide_character for some information on data types to support these
character types.

11

http://en.wikipedia.org/wiki/Wide_character


The Book of C, Release 2022.08

to write comparisons like x < 0, but if x is unsigned, this expression can never be true! A good compiler will
warn you in such a situation, but it's best to avoid it to begin with. So, unless you really need an unsigned
type (e.g., for creating a bitfield), just use a signed type.

Integers in Python and Java compared with C

In Python, an integer can be arbitrarily large (negative or positive). Any limit on the maximum size of
an int is due to available memory, not restrictions related to processor architecture. C is, of course, very
much unlike that. Issues of overflow and underflow come into play with C, and can be very tricky to
detect and debug (a sidebar below discusses the overflow issue).

Java contains (almost) the same basic integer types as in C. It has short, int, and long, which are 2 bytes,
4 bytes, and 8 bytes respectively (i.e., generally as they are in C). Java also has a byte type, which is like
char in C: a 1-byte integer. A char in Java is not treated as an integer: it is a single Unicode character.
Also, all integer types in Java are signed; unsigned integer types don't exist.

3.1.1 The sizeof keyword

There is a keyword in C called sizeof that works like a function and returns the number of bytes occupied
by a type or variable. If there is ever a need to know the size of something, just use sizeof. Here is an
example of how sizeof can be used to print out the sizes of the various integer types on any computer
system. Note that the %lu format placeholder in each of the format strings to printf means "unsigned long
integer", which is what sizeof returns. (As an exercise, change %lu to %d and recompile with clang. It will
helpfully tell you that something is fishy with the printf call.)

1 #include <stdio.h>
2 #include <stdlib.h>
3

4 int main() {
5 char c = 'a';
6 short s = 0xbeef;
7 int i = 100000;
8 long l = 100000000L;
9 long long ll = 60000000000LL;

10 printf("A char is %lu bytes\n", sizeof(c));
11 printf("A short is %lu bytes\n", sizeof(s));
12 printf("An int is %lu bytes\n", sizeof(i));
13 printf("A long is %lu bytes\n", sizeof(l));
14 printf("A long long is %lu bytes\n", sizeof(ll));
15 return EXIT_SUCCESS;
16 }

When the above program is run on a 32-bit machine2, the output is:

A char is 1 bytes
A short is 2 bytes
An int is 4 bytes
A long is 4 bytes
A long long is 8 bytes

2 To find out whether your machine is 64 bit or 32 bit, you can do the following. On Linux, just type uname -p at a terminal. If the
output is i386, you have a 32-bit OS. If it is x86_64, it is 64 bits. All recent versions of MacOS X are 64 bits, so unless you're running
something extremely old, you've got 64.

12 Chapter 3. Basic Types and Operators



The Book of C, Release 2022.08

and when the program is run on a 64-bit machine, the output is:

A char is 1 bytes
A short is 2 bytes
An int is 4 bytes
A long is 8 bytes
A long long is 8 bytes

Notice that the key difference above is that on a 64-bit platform, the long type is 8 bytes (64 bits), but only 4
bytes (32 bits) on a 32-bit platform.

Integer sizes and source code portability

Instead of defining the exact sizes of the integer types, C defines lower bounds. This makes it easier to
implement C compilers on a wide range of hardware. Unfortunately it occasionally leads to bugs where
a program runs differently on a 32-bit machine than it runs on a 64-bit machine. In particular, if you are
designing a function that will be implemented on several different machines, it is best to explicitly specify
the sizes of integral types. If you #include <stdint.h>, you can use types that explicitly indicate their
bit-widths: int8_t, int16_t, int32_t, and int64_t. There are also unsigned variants of these types:
uint8_t, uint16_t, uint32_t, and uint64_t.

For some operating systems-related functions it is extremely important to be sure that a variable is exactly
of a given size. These types come in handy in those situations, too.

3.1.2 char literals

A char literal is written with single quotes (') like 'A' or 'z'. The char constant 'A' is really just a synonym
for the ordinary integer value 65, which is the ASCII value for uppercase 'A'. There are also special case
char constants for certain characters, such as '\t' for tab, and '\n' for newline.

'A'
Uppercase 'A' character

'\n'
Newline character

'\t'
Tab character

'\0'
The "null" character --- integer value 0 (totally different from the char digit '0'!). Remember that this is
the special character used to terminal strings in C.

'\012'
The character with value 12 in octal, which is decimal 10 (and corresponds to the newline character).
Octal representations of chars and integers shows up here and there, but is not especially common
any more.

0x20
The character with hexadecimal value 20, which is 32 in decimal (and corresponds to the space ' '
character). Hexadecimal representations of chars and integers is fairly common in operating systems
code.

3.1. Integer types 13



The Book of C, Release 2022.08

3.1.3 int literals

Numbers in the source code such as 234 default to type int. They may be followed by an 'L' (upper or
lower case) to designate that the constant should be a long, such as 42L. Similarly, an integer literal may be
followed by 'LL' to indicate that it is of type long long. Adding a 'U' before 'L' or 'LL' can be used to specify
that the value is unsigned, e.g., 42ULL is an unsigned long long type.

An integer constant can be written with a leading 0b to indicate that it is expressed in binary (base 2). For
example 0b00010000 is the way to express the decimal number 16 in binary. Similarly, a leading 0x is used
to indicate that a value is expressed in hexadecimal (base 16) --- 0x10 is way of expressing the decimal
number 16. Lastly, a constant may be written in octal (base 8) by preceding it with 0 (single zero) --- 012 is a
way of expressing the decimal number 10. A pitfall related to octal notation is that if you accidentally write
a decimal value with a leading 0, the C compiler will interpret it as a base-8 value!

Type combination and promotion

The integral types may be mixed together in arithmetic expressions since they are all basically just integers.
That includes the char type (unlike Java, in which the byte type would need to be used to specify a single-
byte integer). For example, char and int can be combined in arithmetic expressions such as ('b' + 5).
How does the compiler deal with the different widths present in such an expression? In such a case, the
compiler "promotes" the smaller type (char) to be the same size as the larger type (int) before combining
the values. Promotions are determined at compile time based purely on the types of the values in the
expressions. Promotions do not lose information --- they always convert from one type to a compatible,
larger type to avoid losing information. However, an assignment (or explicit cast) from a larger type to
smaller type (e.g., assigning an int value to a short variable) may indeed lose information.

Pitfall: int overflow

Remember that wonderful algorithm called "binary search"? As an engineer at Google discovered some
time ago, nearly all implementations of binary search are coded incorrectly3. The problem is usually on
the line that computes the midpoint of an array, which often looks like this:

int mid = (low + high) / 2;

So what's the problem? The issue is that for very large arrays, the expression low + high may exceed
the size of a 32-bit integer, resulting in "overflow", and the value resulting from an overflow is undefined!
There is no guarantee that the high-order bit(s) will simply be truncated. In C, the result is that the
array index (mid) overflows to an undefined value, resulting in undefined and likely incorrect program
behavior. See the footnote reference (Page 12, 2) for ways to fix the code in both Java and C/C++.

3.2 Floating point types

float
Single precision floating point number typical size: 32 bits (4 bytes)

double
Double precision floating point number typical size: 64 bits (8 bytes)

long double
A "quad-precision" floating point number. 128 bits on modern Linux and MacOS X machines (16
bytes). Possibly even bigger floating point number (somewhat obscure)

3 https://ai.googleblog.com/2006/06/extra-extra-read-all-about-it-nearly.html

14 Chapter 3. Basic Types and Operators

https://ai.googleblog.com/2006/06/extra-extra-read-all-about-it-nearly.html


The Book of C, Release 2022.08

Constants in the source code such as 3.14 default to type double unless they are suffixed with an 'f' (float)
or 'l' (long double). Single precision equates to about 6 digits of precision and double is about 15 digits
of precision. Most C programs use double for their computations, since the additional precision is usually
well worth the additional 4 bytes of memory usage. The only reason to use float is to save on memory
consumption, but in normal user programs the tradeoff just isn't worth it.

The main thing to remember about floating point computations is that they are inexact. For example, what
is the value of the following double expression?

(1.0/3.0 + 1.0/3.0 + 1.0/3.0) // is this equal to 1.0 exactly?

The sum may or may not be 1.0 exactly, and it may vary from one type of machine to another. For this
reason, you should never compare floating numbers to each other for equality (==) --- use inequality (<)
comparisons instead. Realize that a correct C program run on different computers may produce slightly
different outputs in the rightmost digits of its floating point computations.

3.3 Boolean type

In C prior to the C99 standard, there was no distinct Boolean type. Instead, integer values were used to
indicate true or false: zero (0) means false, and anything non-zero means true. So, the following code:

int i = 0;
while (i - 10) {

// ...

}

will execute until the variable i takes on the value 10 at which time the expression (i - 10) will become false
(i.e., 0).

In the C99 revision, a bool type was added to the language, but the vast majority of existing C code uses
integers as quasi-Boolean values. In C99, you must add #include <stdbool.h> to your code to gain access
to the bool type. Using the C99 bool type, we could modify the above code to use a Boolean flag variable
as follows:

#include <stdbool.h>

// ...

int i = 0;
bool done = false;
while (!done) {

// ...

done = i - 10 == 0
}

3.3. Boolean type 15



The Book of C, Release 2022.08

3.4 Basic syntactic elements

3.4.1 Comments

Comments in C are enclosed by slash/star pairs:

/* .. comments .. */

which may cross multiple lines. C++ introduced a form of comment started by two slashes and
extending to the end of the line::

// comment until the line end

The // comment form is so handy that many C compilers now also support it, although it is not technically
part of the C language.

Along with well-chosen function names, comments are an important part of well written code. Comments
should not just repeat what the code says. Comments should describe what the code accomplishes which
is much more interesting than a translation of what each statement does. Comments should also narrate
what is tricky or non-obvious about a section of code.

3.4.2 Variables

As in most languages, a variable declaration reserves and names an area in memory at run time to hold
a value of particular type. Syntactically, C puts the type first followed by the name of the variable. The
following declares an int variable named "num" and the 2nd line stores the value 42 into num:

int num = 42;

42

num

Fig. 1: A simple memory diagram for int num = 42;.

A variable corresponds to an area of memory which can store a value of the given type. Making a drawing
is an excellent way to think about the variables in a program. Draw each variable as box with the current
value inside the box. This may seem like a "newbie" technique, but when you are buried in some horribly
complex programming problem, it will almost certainly help to draw things out as a way to think through
the problem. Embrace your inner noob.

Initial values in variables and undefined values

Unlike Java, variables in C do not have their memory cleared or set in any way when they are allocated
at run time. The value in a variable at the time it is declared is undefined: it is likely to be filled with what
ever variable or value previously occupied that particular location in memory. Or it might be zeroes. Or
it might be filled with fuzzy pink pandas. The point is that you should never assume that a variable has
any value stored in it at the time of declaration. As a result, you should almost always explicitly initialize
variables at the point of declaration. A good compiler will (usually) tell you when you're playing with fire
with respect to variable initialization, but it is good to get into the habit of explicitly initializing variables
to avoid this pitfall.

16 Chapter 3. Basic Types and Operators



The Book of C, Release 2022.08

Undefined values in C come up in a few other places. For example, although you'd like to think that the
following assignment results in -128 being stored in c:

char c = 127 + 1;

you cannot assume that it has any particular value since the result of an overflow is undefined. Although
the gcc has a special flag -fwrapv which forces overflow to result in two's complement wraparound,
there's no guarantee of this behavior in the absence of the flag.

For lots of good discussion on undefined behaviors in C, see [Regehr] and [Lattner].

Names in C are case sensitive so "x" and "X" refer to different variables. Names can contain digits and
underscores (_), but may not begin with a digit. Multiple variables can be declared after the type by
separating them with commas. C is a classical "compile time" language --- the names of the variables, their
types, and their implementations are all flushed out by the compiler at compile time (as opposed to figuring
such details out at run time like an interpreter).

3.4.3 Assignment Operator =

The assignment operator is the single equals sign (=):

i = 6;
i = i + 1;

The assignment operator copies the value from its right hand side to the variable on its left hand side. The
assignment also acts as an expression which returns the newly assigned value. Some programmers will use
that feature to write things like the following:

y = x = 2 * x; // double x, and also put x's new value in y

Demotion on assignment

The opposite of promotion, demotion moves a value from a type to a smaller type. This is a situation to be
avoided, because strictly speaking the result is implementation and compiler-defined. In other words, there's no
guarantee what will happen, and it may be different depending on the compiler used. A common behavior
is for any extra bits to be truncated, but you should not depend on that. At least a good compiler (like
clang) will generate a compile time warning in this type of situation.

The assignment of a floating point type to an integer type will truncate the fractional part of the number.
The following code will set i to the value 3. This happens when assigning a floating point number to an
integer or passing a floating point number to a function which takes an integer. If the integer portion of a
floating point number is too big to be represented in the integer being assigned to, the result is the ghastly
undefined (see4). Most modern compilers will warn about implicit conversions like in the code below, but
not all.

int i;
i = 3.14159; // truncation of a float value to int

4 See the C11 standard: https://port70.net/~nsz/c/c11/

3.4. Basic syntactic elements 17

https://port70.net/~nsz/c/c11/


The Book of C, Release 2022.08

3.4.4 Arithmetic operations

C includes the usual binary and unary arithmetic operators. It is good practice to use parentheses if there is
ever any question or ambiguity surrounding order of operations. The compiler will optimize the expression
anyway, so as a programmer you should always strive for maximum readability rather than some perceived
notion of what is efficient or not. The operators are sensitive to the type of the operands. So division (/) with
two integer arguments will do integer division. If either argument is a float, it does floating point division.
So (6/4) evaluates to 1 while (6/4.0) evaluates to 1.5 --- the 6 is promoted to 6.0 before the division.

Operator Meaning

+ Addition
- Subtraction
/ Division
* Multiplication
% Remainder (mod)

Pitfall: int vs. float Arithmetic

Here's an example of the sort of code where int vs. float arithmetic can cause problems. Suppose the
following code is supposed to scale a homework score in the range 0..20 to be in the range 0..100:

{
int score;
... // suppose score gets set in the range 0..20 somehow
score = (score / 20) * 100; // NO -- score/20 truncates to 0
...

}

Unfortunately, score will almost always be set to 0 for this code because the integer division in the
expression (score/20) will be 0 for every value of score less than 20. The fix is to force the quotient to be
computed as a floating point number:

score = ((double)score / 20) * 100; // OK -- floating point division from cast
score = (score / 20.0) * 100; // OK -- floating point division from 20.0
score = (int)(score / 20.0) * 100; // NO -- the (int) truncates the floating

// quotient back to 0

Note that these problems are similar to int versus float problems in Python (version 2). In Python 3,
division using / always returns a floating point type, which eliminates the problem. (If integer division is
desired in Python 3, the // operator can be used.)

3.4.5 Unary Increment Operators: ++ and --

The unary ++ and -- operators increment or decrement the value in a variable. There are "pre" and "post"
variants for both operators which do slightly different things (explained below).

18 Chapter 3. Basic Types and Operators



The Book of C, Release 2022.08

Operator Meaning

var++ increment "post" variant
++var increment "pre" variant
var-- decrement "post" variant
--var decrement "pre" variant

An example using post increment/decrement:

int i = 42;
i++; // increment on i
// i is now 43
i--; // decrement on i
// i is now 42

Pre- and post- variations

The pre-/post- variation has to do with nesting a variable with the increment or decrement operator inside
an expression --- should the entire expression represent the value of the variable before or after the change?
These operators can be confusing to read in code and are often best avoided, but here is an example:

int i = 42;
int j;
j = (i++ + 10);
// i is now 43
// j is now 52 (NOT 53)
j = (++i + 10)
// i is now 44
// j is now 54

3.4.6 Relational Operators

These operate on integer or floating point values and return a 0 or 1 boolean value.

Operator Meaning

== Equal
!= Not Equal
> Greater Than
< Less Than
>= Greater or Equal
<= Less or Equal

To see if x equals three, write something like if (x==3) ....

pitfall: = != ==

An absolutely classic pitfall is to write assignment (=) when you mean comparison (==). This would not
be such a problem, except the incorrect assignment version compiles fine because the compiler assumes
you mean to use the value returned by the assignment. This is rarely what you want: if (x=3) ....

3.4. Basic syntactic elements 19



The Book of C, Release 2022.08

This does not test if x is 3! It sets x to the value 3, and then returns the 3 to the if statement for testing.
3 is not 0, so it counts as "true" every time.

Some compilers will emit warnings for these types of expressions, but a better technique that many C
programmers use to avoid such problems is to put the literal value on the left hand side of the expression
as in: if (3=x)...

In this case, a compile-time error would result (you can't assign anything to a literal).

3.4.7 Logical Operators

The value 0 is false, anything else is true. The operators evaluate left to right and stop as soon as the
truth or falsity of the expression can be deduced. (Such operators are called "short circuiting") In ANSI C,
these are furthermore guaranteed to use 1 to represent true, and not just some random non-zero bit pattern.
However, there are many C programs out there which use values other than 1 for true (non-zero pointers
for example), so when programming, do not assume that a true boolean is necessarily 1 exactly.

Operator Meaning

! Boolean not (unary)
&& Boolean and
|| Boolean or

3.4.8 Bitwise Operators

C includes operators to manipulate memory at the bit level. This is useful for writing low-level hardware
or operating system code where the ordinary abstractions of numbers, characters, pointers, etc... are
insufficient. Using bitwise operators is very common in microcontroller programming environments and
in some "systems" software.

Bit manipulation code tends to be less "portable". Code is "portable" if with no programmer intervention it
compiles and runs correctly on different types of processors. The bitwise operations are typically used with
unsigned types. In particular, the shift operations are guaranteed to shift zeroes into the newly vacated
positions when used on unsigned values.

Operator Meaning

~ Bitwise NOT (unary) – flip 0 to 1 and 1 to 0 throughout
& Bitwise AND
| Bitwise OR
^ Bitwise XOR (Exclusive OR)
>> Right Shift by right hand side (RHS) (divide by power of 2)
<< Left Shift by RHS (multiply by power of 2)

Do not confuse the bitwise operators with the logical operators. The bitwise connectives are one character
wide (&, |) while the boolean connectives are two characters wide (&&, ||). The bitwise operators have
higher precedence than the boolean operators. The compiler will not typically help you out with a type
error if you use & when you meant &&.

20 Chapter 3. Basic Types and Operators



The Book of C, Release 2022.08

Bitwise operation example

Say we want to set certain bits in a byte. In particular, say that (starting at 1, on the far right) we want to set
the 2nd and 5th bits so that the byte is equal to 0b00010010 (hex 0x12). The following program would do
that:

1 #include <stdio.h>
2

3 #define SECOND 1
4 #define FIFTH 4
5

6 int main() {
7 unsigned char flags = 0b00000000;
8 flags = (1<<SECOND); // light up the 2nd bit
9 flags = flags | (1 << FIFTH); // and the 5th

10 printf("0x%x\n", flags);
11 return 0;
12 }

Lines 3 and 4 in the code segment above create two macro substitutions (#define is a C preprocessor directive).
During the preprocessing phase of compilation, anywhere SECOND appears will be replaced with the value
1; similarly for the text FIFTH. So why is SECOND defined as 1 and not 2 (and similar for FIFTH)? We will
come to that shortly.

In main, the variable flags is assigned all zeroes (notice the binary literal) on line 7, then on line 8 we assign
to flags by shifting a 1 SECOND places to the left. Since SECOND is assigned 1, we shift 0b00000001 one place
to the left, giving 0b00000010. So perhaps that's an answer to the question above: the value for SECOND and
FIFTH define the number of positions to shift a 1 to the left. On line 9, we do the same thing for FIFTH but we
also perform a bitwise OR with the existing value of flags. The bitwise OR operation provides a way to
combine (or union) two or more values together. For example 0x01 | 0xF0 is 0xF1.

Although not shown in the example above, if we wanted to check whether the fifth bit in a byte (again,
starting at 1 counting from the right), we might use the following expression: fifth_is_set = flags &
(1<<FIFTH);. Doing a bitwise AND is referred to as masking since AND``ing anything with ``0b00010000
will mask (unset) any bits that may have been set other than the fifth bit. Similarly, if we wanted to unset
a particular bit but leave all others unchanged, we could create a mask like this: ~(1<<FIFTH) which has
a bit-level representation of 0b11101111. Performing an AND with that mask and any byte would leave all
bits except the 5th as-is while setting the 5th to 0.

3.4.9 Other Assignment Operators

In addition to the plain = operator, C includes many shorthand operators which represents variations on
the basic =. For example += adds the right hand side to the left hand side. x = x + 10 can be reduced to x
+= 10. Note that these operators are much like similar operators in other languages, like Python and Java.
Here is the list of assignment shorthand operators:

Operator Meaning

+=, -= Increment or decrement by RHS
*=, /= Multiply or divide by RHS
%= Mod by RHS
>>= Bitwise right shift by RHS (divide by power of 2)
<<= Bitwise left shift by RHS (multiply by power of 2)
&=, |=, ^= Bitwise and, or, xor by RHS

3.4. Basic syntactic elements 21



The Book of C, Release 2022.08

Exercises

The theme for the following exercises is dates and times, which often involve lots of interesting calculations
(sometimes using truncating integer arithmetic, sometimes using modular arithmetic, sometimes both), and
thus good opportunities to use various types of arithmetic operations, comparisons, and assignments.

1. Write a C program that asks for a year and prints whether the year is a leap year. See the Wikipedia
page on leap year for how to test whether a given year is a leap year. Study the first program in the
tutorial chapter for how to collect a value from keyboard input, and use the atoi function to convert
a C string (char array) value to an integer.

2. Write a program that asks for year, month, and day values and compute the corresponding Julian Day
value. See the Wikipedia page on Julian Day for an algorithm for doing that. (See specifically the
expression titled "Converting Gregorian calendar date to Julian Day Number".)

3. Extend the previous program to compute the Julian date value (a floating point value), using the
computation described in "Finding Julian date given Julian day number and time of day" on the
Wikipedia page linked in the previous problem. Note that you'll need to additionally ask for the
current hour, minute and second from the keyboard.

4. Write a program that asks for a year value and computes and prints the month and day of Easter in
that year. The Wikipedia page on Computus provides more than one algorithm for doing so. Try
using the "Anonymous Gregorian algorithm" or the "Gauss algorithm", which is a personal favorite.

References

22 Chapter 3. Basic Types and Operators

https://en.wikipedia.org/wiki/Leap_year
https://en.wikipedia.org/wiki/Julian_day
https://en.wikipedia.org/wiki/Computus


CHAPTER

FOUR

CONTROL STRUCTURES

In this chapter, we encounter the set of "control" structures in C, such as conditional statements and looping
constructs. As a preview, the control structures in C are nearly identical to those found in Java (since Java
syntax is heavily based on C), and bear strong resemblance to control structures found in other programming
languages.

4.1 if Statement

Both an if and an if-else are available in C. The <expression> can be any valid C expression. The
parentheses around the expression are required, even if it is just a single variable:

if (<expression>) <statement> // simple form with no {}'s or else clause

You should always use curly braces around the statement block associated with an if statement. Although
C allows a programmer not to include the curly braces in the case of if statements and other control
structures when there is only a single statement in the statement block, you should always use the curly
braces. Why, you ask, should I type those additional characters? Just ask the unfortunate engineering
group at Apple that introduced the "goto fail" bug into their SSL (secure sockets layer) library: a bug that
affected the macOS and iOS operating systems quite severely1. The upshot of this security failure is that it
could have been prevented with the rigorous use of curly braces for all statement blocks.

So, for the simple form of the if statement shown above, you should really write:

if (<expression>) { <statement> } // simple form with no {}'s or else clause
// note the curly braces around the statement
// block!

Code blocks use curly braces ({})

C uses curly braces ({}) to group multiple statements together, very much like Java. Whitespace is
generally insignificant, very much unlike Python. Not surprisingly, within a code block the statements
are executed in order.

Note that older versions of C (pre-C99) required that all variables be declared at the beginning of a code
block. Since the C99 standard, however, variables can be declared on any line of code, as in Java and
C++.

1 See https://gotofail.com for a variety of information about the bug, and https://www.imperialviolet.org/2014/02/22/applebug.html
for detailed analysis of the source code that caused the problem.

23

https://gotofail.com
https://www.imperialviolet.org/2014/02/22/applebug.html


The Book of C, Release 2022.08

As in Java, the else keyword can be used to provide alternative execution for a conditional expression. Also
similar to Java, multiple if ... else if statements can be chained together. There is no elif as in Python
(or elsif as in Ruby).

if (<expression>) { // simple form with {}'s to group statements
<statements>

}

if (<expression>) { // full then/else form
<statements>

} else {
<statements>

}

if (<expression1>) { // chained if/else if
<statements>

} else if (<expression2>) {
<statements>

} ...

4.2 The conditional expression (ternary operator)

The conditional expression can be used as a shorthand for some if-else statements. The general syntax of
the conditional operator is:

<expression1> ? <expression2> : <expression3>

This is an expression, not a statement, so it represents a value. The operator works by evaluating expression1.
If it is true (non-zero), it evaluates and returns expression2. Otherwise, it evaluates and returns
expression3.

The classic example of the ternary operator is to return the smaller of two variables. Instead of writing:

if (x < y) {
min = x;

} else {
min = y;

}

you can write:

min = (x < y) ? x : y;

The ternary operator is viewed by some programmers as "excessively tricky" since expressions with such
operators can be hard to read. Use your best judgment, and don't do something this [Horrific] example.

24 Chapter 4. Control Structures



The Book of C, Release 2022.08

4.3 switch statement

The switch statement is a sort of specialized form of if with the goal of efficiently separating different blocks
of code based on the value of an integer. The switch expression is evaluated, and then the flow of control
jumps to the matching const-expression case. The case expressions are typically int or char constants
(unfortunately, you cannot use strings as case expressions). The switch statement is probably the single
most syntactically awkward and error-prone feature of the C language:

switch (<expression>) {
case <const-expression-1>:

<statement>
break;

case <const-expression-2>:
<statement>
break;

case <const-expression-3>:
case <const-expression-4>: // here we combine case 3 and 4

<statement>
break;

default: // optional
<statement>

}

Each constant needs its own case keyword and a trailing colon (:). Once execution has jumped to a particular
case, the program will keep running through all the cases from that point down --- this so called fall through
operation is used in the above example so that expression-3 and expression-4 run the same statements.
The explicit break statements are necessary to exit the switch. Omitting the break statements is a common
error --- it compiles, but leads to inadvertent, unexpected, and likely erroneous fall-through behavior.

Why does the switch statement fall-through behavior work the way it does? The best explanation might
be that C was originally developed for an audience of assembly language programmers. The assembly
language programmers were used to the idea of a "jump table" with fall-through behavior, so that's the way
C does it (it's also relatively easy to implement it this way). Unfortunately, the audience for C is now quite
different, and the fall-through behavior is widely regarded as an unfortunate part of the language.

4.4 while loop

The while loop evaluates the test expression before every loop, so it can execute zero times if the condition
is initially false. The conditional expression requires parentheses like the if:

while (<expression>) {
<statement>

}

Although the curly braces are not technically required if there is only one statement in the body of the while
loop, you should always use the curly braces. Again, seePage 23, 1 for why.

4.3. switch statement 25



The Book of C, Release 2022.08

4.5 do-while loop

Like a while loop, but with the test condition at the bottom of the loop. The loop body will always execute
at least once. The do-while tends to be an unpopular area of the language. Although many users of C use
the straight while if possible, a do-while loop can be very useful in some situations:

do {
<statement>

} while (<expression>);

4.6 for loop

The for loop in C contains three components that are often used in looping constructs, making it a fairly
convenient statement to use. The three parts are an initializer, a continuation condition, and an action, as
in:

for (<initializer>; <continuation>; <action>) {
<statement>

}

The initializer is executed once before the body of the loop is entered. The loop continues to run as long
as the continuation condition remains true. After every execution of the loop, the action is executed. The
following example executes 10 times by counting 0..9. Many loops look very much like the following:

1 #include <stdio.h>
2 #include <stdlib.h>
3

4 int main() {
5 for (int i = 0; i < 10; i++) {
6 printf("%d\n", i);
7 }
8 return EXIT_SUCCESS;
9 }

C programs often have series of the form 0..(some_number-1). It's idiomatic in C for loops like the example
above to start at 0 and use < in the test so the series runs up to but not equal to the upper bound. In other
languages you might start at 1 and use <= in the test.

Each of the three parts of the for loop can be made up of multiple expressions separated by commas.
Expressions separated by commas are executed in order, left to right, and represent the value of the last
expression.

Note that in the C standard prior to C99, it was illegal to declare a variable in the initializer part of a for
loop. In C99, however, it is perfectly legal. If you compile the above code using gcc without the -std=c99
flag, you will get the following error:

forloop.c: In function ‘main’:
forloop.c:4:5: error: ‘for’ loop initial declarations are only allowed in C99 mode
forloop.c:4:5: note: use option -std=c99 or -std=gnu99 to compile your code

Once the -std=c99 flag is added, the code compiles correctly, as expected.

26 Chapter 4. Control Structures



The Book of C, Release 2022.08

4.6.1 break

The break statement causes execution to exit the current loop or switch statement. Stylistically speaking,
break has the potential to be a bit vulgar. It is preferable to use a straight while with a single conditional
expression at the top if possible, but sometimes you are forced to use a break because the test can occur
only somewhere in the midst of the statements in the loop body. To keep the code readable, be sure to make
the break obvious --- forgetting to account for the action of a break is a traditional source of bugs in loop
behavior:

while (<expression>) {
<statement>
statement>
if (<condition which can only be evaluated here>) {

break;
}
<statement>
<statement>

}
// control jumps down here on the break

The break does not work with if; it only works in loops and switches. Thinking that a break refers to an
if when it really refers to the enclosing while has created some high-quality bugs. When using a break, it
is nice to write the enclosing loop to iterate in the most straightforward, obvious, normal way, and then use
the break to explicitly catch the exceptional, weird cases.

4.6.2 continue

The continue statement causes control to jump to the bottom of the loop, effectively skipping over any
code below the continue. As with break, this has a reputation as being vulgar, so use it sparingly. You can
almost always get the effect more clearly using an if inside your loop:

while (<expression>) {
<statement>
if (<condition>) {

continue;
}
<statement>
<statement>
// control jumps here on the continue

}

4.6.3 Statement labels and goto

Continuing the theme of statements that have a tendency of being a bit vulgar, we come to the king of
vulgarity, the infamous goto statement [Goto]. The structure of a goto statement in C is to unconditionally
jump to a statement label, and continue execution from there. The basic structure is:

label:
<statement>
..
<statement>
goto label;

4.6. for loop 27



The Book of C, Release 2022.08

The goto statement is not uncommon to encounter in operating systems code when there is a legitimate
need to handle complex errors that can happen. A pattern that you might see is something like:

int complex_function(void) {
if (initialize_1() != SUCCESS) { goto out1; }
if (initialize_2() != SUCCESS) { goto out2; }
if (initialize_3() != SUCCESS) { goto out3; }

/* other statements */

return SUCCESS;

out3:
deinitialize_3();

out2:
deinitialize_2();

out1:
deinitialize_1();

return ERROR;
}

Notice the structure above: there are multiple steps being performed to carry out some initialization for an
operation2. If one of those initialization operations fails, code execution transfers to a statement to handle
deinitialization, and those de-init operations happen in reverse order of initialization. It is possible to rewrite
the above code to use if/else structures, but the structure becomes much more complex (see an exercise
below). Although goto has the reputation of leading to "spaghetti code", judicious use of this statement in
situations like the above makes for cleaner and clearer code.

Exercises

1. Rewrite the goto example code above (the last code example, above) to use if/else instead. Which
code do you think exhibits a more clear structure?

2. Consider the following program snippet:

char buffer[64];
printf("Enter an integer: ");
fgets(buffer, 64, stdin);
int val = atoi(buffer); // convert the string to an integer
if (val % 2 == 1)
val *= 2;
val += 1

printf("%d\n", val);

What is printed if the number 3 is entered?

3. Say that you want to write a program that repeatedly asks for a snowfall amount, and that you want
to keep asking for another value until the sum of all values exceeds a certain value. What control
structure would work best to facilitate entry of the snowfall values, and why?

4. Say you want to write a program that computes the average of quiz scores. You have a big stack of
quizzes, so you do not know the number of quizzes up front. What control structure would work best
to facilitate entry of the scores, and why?

2 This example was adapted from https://blog.regehr.org/archives/894, where you can find additional discussion on tasteful use of
goto in systems code.

28 Chapter 4. Control Structures

https://blog.regehr.org/archives/894


The Book of C, Release 2022.08

5. Say that you want to simulate rolling a die (singular of dice) a fixed number of times and to compute
and print the average value for the die rolls. What control structure would work best for this problem,
and why?

References

4.6. for loop 29



The Book of C, Release 2022.08

30 Chapter 4. Control Structures



CHAPTER

FIVE

ARRAYS AND STRINGS

5.1 Arrays

Arrays in C are declared and used much like they are in Java. The syntax for using arrays in C is nearly
identical to Java, and is very similar to the syntax used for Python lists. As with both Python and Java,
arrays in C are always indexed starting at 0. Thus, in the following example, the first int in the scores
array is scores[0] and the last is scores[99]:

1 int scores[100];
2 scores[0] = 13; // set first element
3 scores[99] = 42; // set last element

The name of the array refers, in some sense, to the whole array but in actuality, the array name refers to
the memory address at which the array storage begins. As in Java, elements of an array in C are stored
contiguously. Thus, for the above array, if the first element in the array is stored at memory address x, the
next element is stored at x+4 (since the int is 4 bytes on most machines today), as depicted in A memory
diagram of the scores array., below.

13 42

scores

memory address x
memory address x+4

memory address x+8

...

Fig. 1: A memory diagram of the scores array.

31



The Book of C, Release 2022.08

5.1.1 Array initialization

Note that because C does not do any automatic initialization of variables, the array has undefined contents
at the point of declaration (line 1, above). A common practice is to use either a simple for loop construct to
set all values in the array to a specific value, e.g.,:

int scores[100];
for (int i = 0; i < 100; i++) {

scores[i] = 0;
}

Another common practice is to use the memset function or bzero function to set everything in an array
to zeroes. The memset function is declared in strings.h (so you need to #include it), and takes three
parameters: a memory address (which can just be the name of the array), the character that should be
written into each byte of the memory address, and the number of bytes to set. Thus, the above for loop
could be replaced with the following:

// at the top of your source code
#include <string.h>

int scores[100];
memset(scores, 0, 100*sizeof(int));

Note that we need to specify the number of bytes we want to set to 0, thus we say sizeof(int) multiplied
by the number of array elements. It's always good practice to use sizeof, even if you think you can assume
that the size of an int is 4. Don't make that assumption; use sizeof.

One last way that array contents can be initialized is to use C initializer syntax. Say that we just want to
create an array of 10 scores. We could initialize the array as follows:

int scores[10] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10};

The initializer syntax in C is just a set of curly braces, within which are comma-separate values. You can
even leave off the array size if you give an initializer, and the compiler will figure out how large to make
the array:

int scores[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}; // equivalent to above

The initializer syntax is especially useful for small-ish arrays for which the initial values are not all identical.

5.1.2 sizeof and arrays

The built-in sizeof function works with arrays. Specifically, it will return the number of bytes occupied by
the array, which is quite helpful. So, the memset code we wrote earlier could be replaced with:

// at the top of your source code
#include <string.h>

int scores[100];
memset(scores, 0, sizeof(scores));

32 Chapter 5. Arrays and Strings



The Book of C, Release 2022.08

5.1.3 No array bounds checking!

It is a very common error to try to refer to a non-existent array element. Unlike Java or Python, in which
an out-of-bounds array (or list) reference will result in an exception, C will happily attempt to access the
non-existent element. The program behavior in such a case is undefined, which basically means that anything
can happen. Your program might crash, but it might not. It might behave as you expect, but it might not.
It might cause your computer to levitate or to spontaneously combust. Who knows? Yuck. Welcome to C.

So what you can you do about this? The best thing is to use good tools for detecting memory corruption
and bad array accesses. The valgrind tool1 is especially good in this regard, and is highly recommended.
Its output can be somewhat difficult to understand at first, but it is a hugely helpful tool when trying to
debug seemingly random program behavior.

Besides valgrind, you can use the clang static analyzer. This tool analyzes your code to find potential
bugs, too, but it is pretty fast (it doesn't actually execute your code) and the output is a little easier to
grasp than valgrind. The tool to invoke is called scan-build2, and can be used on the command line
before any compiler tols that you invoke. For example, consider the following program that increments an
uninitialized variable (thus leading to undefined behavior):

#include <stdio.h>
#include <stdlib.h>

int main() {
int x;
x += 10;
printf("%d\n", x);
return EXIT_SUCCESS;

}

Running scan-build on this code results in the following:

$ scan-build clang uninit.c
scan-build: Using '/usr/lib/llvm-3.8/bin/clang' for static analysis
uninit.c:6:7: warning: The left expression of the compound assignment is an␣
↪→uninitialized value. The computed value will also be garbage

x += 10;
~ ^

1 warning generated.
scan-build: 1 bug found.

This is helpful! It's something that ordinary compilation will not uncover (clang compiles this program
without warning or error, ordinarily), and errors like this are pretty easy to make for inexperienced C pro-
grammers, especially when it comes to arrays and pointers (a topic coming soon). Advice: run scan-build
as part of your C regimen.

1 http://valgrind.org
2 https://clang-analyzer.llvm.org/scan-build.html

5.1. Arrays 33

http://valgrind.org
https://clang-analyzer.llvm.org/scan-build.html


The Book of C, Release 2022.08

5.1.4 Variable length arrays

At the point of declaration, the size of an array in C can be specified with a variable, which creates what
is called a variable length array. Variable length arrays were added to C in the C99 standard, so if you
use a variable when specifying the size of an array and there is a compile-time error on that line, make
sure that you are compiling in C99 mode (-std=c99 on clang and gcc). Here is an example with using a
variable-length array (notice that we're using the atoi function to convert a string to an integer):

1 #include <stdio.h>
2 #include <stdlib.h>
3

4 int main() {
5 printf("How many scores to input? ");
6 char buffer[10];
7 fgets(buffer, 10, stdin);
8 int num_scores = atoi(buffer);
9 int scores[num_scores];

10 for (int i = 0; i < num_scores; i++) {
11 printf("Enter score %d: ", i+1);
12 fgets(buffer, 10, stdin);
13 scores[i] = atoi(buffer);
14 }
15

16 // ... do something with the scores
17

18 return EXIT_SUCCESS;
19 }

5.2 Multidimensional Arrays

Just as in Java, C allows a programmer to declare "multi-dimensional" arrays by using multiple pairs of
square braces in the array variable declaration. For example, a 2-dimensional array of integers with r rows
and c columns would be declared as int array[r][c]. Thus, if we wanted to declare a 3x3 array to hold
the contents of a tic-tac-toe board, we might do something like this:

char board[3][3];

You can use array initialization syntax with multi-dimensional arrays, too. For example, the board declara-
tion could set each element as follows:

char board[3][3] = {{'O', 'O', ' '},
{'X', 'X', 'O'},
{' ', 'O', 'X'}};

Note that each nested set of curly braces in the initializer refers to a row in the array.

The underlying implementation of a multi-dimensional array stores all the elements in a single contiguous
block of memory. The array is arranged with the elements of the rightmost index next to each other. In
other words, board[1][8] comes right before board[1][9] in memory. (This arrangement is called "row-major
order"3.)

3 http://en.wikipedia.org/wiki/Row-major_order

34 Chapter 5. Arrays and Strings

http://en.wikipedia.org/wiki/Row-major_order


The Book of C, Release 2022.08

Memory access efficiency.

If you know about CPU caches and cache lines, you'll know that it's more efficient to access memory
which is near other recently accessed memory. This means that the most efficient way to read through a
chunk of the array is to vary the rightmost index the most frequently since that will access elements that
are near each other in memory.

5.3 C Strings

C has minimal support of character strings. A string in C is, in essence, an array of chars. C includes
a standard library of functions for performing a variety of string operations, but the programmer is ulti-
mately responsible for managing the underlying array (and memory) used by the string. Computations
involving strings is very common, so becoming a competent C programmer requires a level of adeptness at
understanding and manipulating C strings.

A C string is just an array of char with the one additional convention that a "null" character ('\0') is stored
after the last character in the array, as an end-of-string marker. For example, the following code creates and
prints the C string "go 'gate" (using some array initialization syntax introduced above):

char string[] = {'g', 'o', ' ', '\'', 'g', 'a', 't', 'e', '\0' };
printf("%s\n", string);

Notice a few things about the above line of code: (1) we don't need to specify the size of the array (the
compiler can figure that out), (2) we need to "escape" the apostrophe (the 4th character), since we need to
distinguish it from the character delimiters, and (3) we need to explicitly specify the end-of-string marker
(null character).

Another way to initialize a C string is to use double-quotes. The following code is identical to above:

char string[] = "go 'gate";
printf("%s\n", string);

The compiler automatically adds the null termination character as the last character in string, giving an
identical in-memory representation as the previous code example.

Since a C string is just an array of char, it is totally mutable (which should be, hopefully, an obvious point).
As a result, we can tamper directly with the contents of the array to change the string. For example, building
on the last example, we could write:

string[3] = 's';
string[4] = 'k';
printf("%s\n", string);

to change the string to "go skate" and print it.

5.3. C Strings 35



The Book of C, Release 2022.08

5.3.1 Getting the length of a string

It is often necessary in programs to obtain the length of a string. There is a built-in strlen function just for
this purpose. strlen takes a single C string as a parameter, and returns an size_t type, which is typically
the same size as a long (either 4 or 8 bytes, depending whether you're on a 32-bit or 64-bit machine,
respectively). strlen is declared in the string.h header file, so don't forget to include that file when using
any built-in string functions like strlen.

Here's a brief example:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

int main() {
char name[128];
printf("Please type your name: ");
fgets(name, 128, stdin);
printf("Your name is %d characters long.\n", strlen(name)-1);

// why strlen(name) - 1?
// fgets includes the \n (newline) character that the user types in
// the string filled in name, and we don't want to include that
// character as part of the length of the name.

return EXIT_SUCCESS;
}

Which header file do I need to include?

For pretty much all C programs you write you will need to #include some header files (headers are
discussed in more detail in Program structure and compilation). Which header file will you need? One of
the easiest ways to find out is to use the man program in a Linux (or *NIX) shell to read the manual page
for a particular C library function. For example, if you need to find out what include file to use for the
function atoi, you could simply type man atoi at the command line. At the top of the man page the
appropriate #include line will be listed. You can also use a search engine and search for atoi man page
and usually you'll get the same results, but different C library versions and compilers may use slightly
different header files so its best just to use the man pages on your system.

Manual pages can be a little bit difficult to wade through, but they are almost always divided into useful
sections so you can (sort of) quickly find what you're looking for. For finding out what header file to
include, look in a section at the top of the man page called "SYNOPSIS". That section also contains the
function "prototypes" (which we'll discuss in a later chapter on functions), which provides the data types
of any parameters and return values.

To navigate a man page, you can usually type 'd' to go down a page, 'u' to go up a page, and 'q' to
quit (type 'h' or '?' for help on navigating). One confusing aspect of looking up a man page is that the
same name can appear in multiple sections of the manual pages system. For example, there's a printf C
library function, and there is also a printf function available for writing shell scripts. If you just type man
printf, you'll get the shell command reference, which may not be what you want. To get the right man
page, you can type man <sectionnumber> <symbol>, as in man 3 printf (the C library function printf
is in manual section 3). To find out the manual section number, you can search the manual pages by
typing man -k printf, which will give a list of all man pages that contain the string printf. The section
number is shown in parens after the function name.

36 Chapter 5. Arrays and Strings



The Book of C, Release 2022.08

5.3.2 Copying strings

Recall that an array variable really just holds the memory address of the beginning of the array. Thus, =
(direct assignment) cannot be used to copy strings. Instead, the characters must be copied one-by-one from
one string to another. Fortunately, the pain of doing this is (somewhat) alleviated by a number of built-in
C library functions to do the work for us. The best function to use for copying strings is called strlcpy,
which takes three parameters: the destination string buffer, the source string, and the size (number of bytes)
in the destination string buffer. For example, if we wanted to make a copy of a string that a user typed in,
we could do the following:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

int main() {
char buffer[128];
printf("Gimme a string: ");
fgets(buffer, 128, stdin);
size_t size = strlen(buffer)+1; // add 1 for the null termination character!
char copy[size];
strlcpy(copy, buffer, size);
return EXIT_SUCCESS;

}

Why, you may ask, do we need to pass the size of the destination string buffer as the third argument? Can't
the compiler figure it out? Sadly, it cannot, especially in the case of variable length arrays and pointers
(which we will encounter in a later chapter). There is an "older" C library function called strcpy which only
takes two parameters: the destination and the source strings. One seriously bad thing that can happen with
strcpy is exemplified by the following code:

char source[] = "this is a fairly long string, isn't it?";
char dest[8]; // this is a rather small buffer, isn't it?
strcpy(dest, source);

The strcpy function will happily copy the string referred to by source into the string referred to by dest.
That's bad. The length of source is way longer than dest, so what happens is a buffer overflow. That is, the
strcpy function ends up blowing past the end of the 8 bytes we allocated to dest, and starts writing data
into what ever comes next (which happens to be on the stack of what ever function is executing). Again,
clearly bad stuff. Even worse, the program may crash ... or it might not. It's impossible to tell from the
source code, because the behavior (according to the C language specification) is undefined4. The moral of
the story: always use strlcpy. Also, it may be useful to note that scan-build, described above, detects and
prints a warning about this buffer overflow.

4 http://en.wikipedia.org/wiki/Undefined_behavior

5.3. C Strings 37

http://en.wikipedia.org/wiki/Undefined_behavior


The Book of C, Release 2022.08

5.3.3 Comparing strings

Just as = cannot be used to copy strings, == cannot be used to compare strings. The reason is very similar
to why == cannot be used in the Java language to compare strings: the comparison for equality will just
compare string references (or "pointers", which we will encounter soon) instead of comparing the contents of
the strings.

There are four C library functions that are commonly used to compare two strings.

strcmp(s1, s2)
Compare C strings referred to by parameters s1 and s2. Return 0 if the string contents are equivalent,
-1 if s1 lexicographically precedes s2, and 1 if s2 lexicographically precedes s1.

strcasecmp(s1, s2)
Same as strcmp, but compare the strings in a case-insensitive manner.

strncmp(s1, s2, n)
Same as strcmp, but only compare the first n characters of the two strings. (Technically strncmp only
compares the first min(n, strlen(s1), strlen(s2)) characters).

strncasecmp(s1, s2, n)
Same as strncmp, but compare the strings in a case-insensitive manner.

5.3.4 Another example

Let's look at one more example of a string manipulation program. In this program, we ask the user for a
string, then convert all characters in the string to lowercase.

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <string.h>
4 #include <ctype.h>
5

6 int main() {
7 char buffer[64];
8 printf ("Gimme a string: ");
9 fgets(buffer, 64, stdin);

10 for (int i = 0; i < strlen(buffer); i++) {
11 if (isupper(buffer[i])) {
12 buffer[i] = tolower(buffer[i]);
13 }
14 }
15 printf ("Here's your string, lower-cased: %s\n", buffer);
16 return EXIT_SUCCESS;
17 }

An example run of the program might look like this:

Gimme a string: AbCDERX!!! whY?!
Here's your string, lower-cased: abcderx!!! why?!

The core of the function is a for loop that iterates through all indexes of the string, checking whether each
character should be lower-cased. The code above also demonstrates a couple functions from the #include
<ctype.h> header file (isupper and tolower). The isupper test (line 10) is, strictly speaking, unnecessary;
calling tolower on an already-lowercased letter still results in a lowercase letter. Otherwise, those two

38 Chapter 5. Arrays and Strings



The Book of C, Release 2022.08

new functions behave as one might expect: given a character, they return either a new character, or a
(quasi-)Boolean value5.

There are quite a few functions defined in ctype.h. On MacOS X you can type man ctype to get a list of
those functions, and on Linux, you can type man islower (or man <any ctype function>) to get a catalog
of all the various functions in ctype.h. The following is an incomplete list; see man pages for gory details:

• isalnum
• isalpha
• isdigit

• ishexnumber
• islower
• isnumber

• isprint
• ispunct
• isspace

• isupper
• tolower
• toupper

Exercises

1. Run the following program, which has a bad array index. What is its behavior? What if you change
the for loop so that the second part of the for loop reads i <= max*100 --- what happens then?

1 #include <stdio.h>
2 #include <stdlib.h>
3

4 int main() {
5 int max = 10;
6 int array[max] = { 1, 1, 2, 3, 5, 8, 13, 21, 34, 55 };
7

8 for (int i = 0; i <= max; i++) {
9 printf("Array index %d contains %d\n", i, array[i]);

10 }
11 return EXIT_SUCCESS;
12 }

2. Write some code that computes the length of a string without using the built-in strlen function.
(Defining new functions is described in a later chapter, but with some Java and/or Python knowledge,
you can probably make a good guess at how to define a new function in C.)

3. Implement your own version of strlcpy. Instead of calling strlcpy on the second to last line of the
strlcpy example above, write your own for loop (or some other kind of loop) to accomplish the same
thing.

4. Write a program that asks for a string from a user and "strips" all whitespace characters from the end
of the string (spaces, tabs and newlines). To do that, you can simply assign a null character to the
character array index that follows the last non-whitespace character of the string.

5. Write a program that asks for a string from a user and prints the string in reverse.

6. Write a program that asks for a string from a user and prints whether the string is a palindrome.
Don't implement this problem recursively; check the characters within the string in some type of loop
structure. In your implementation, ignore non-letters and treating the string in a case-insensitive
manner. For example, "A man, a plan, a canal, Panama!" should be considered a valid palindrome.

7. Write a program that asks for two strings and prints whether the two strings are anagrams of each
other. This is somewhat challenging to do given what has been covered in C thus far, but good practice!

8. Write a simple "race-pace" calculator. Ask a user to type the race distance (in miles), and a string
representing the time they want to finish the race in, using a format like "HH:MM:SS". Compute and
return the pace per-mile required to achieve the finish time. A few notes and hints about this problem:

5 The isupper function returns an int, not bool, which is fairly common in C. Since the bool type didn't get added to the language
until fairly recently, most predicate functions return an integer representing True (1) or False (0).

5.3. C Strings 39



The Book of C, Release 2022.08

• You should accept the miles value as a floating point value. You can use the standard library
function atof to convert a string to a floating point value. Any floating point variables can be
declared as either float or double (just like Java).

• You can assume that the string entered by the user for finish time is exactly in the format
"HH:MM:SS", for simplicity. Assume that if the user wants to finish in 31 minutes and 19
seconds, they type "00:31:19".

40 Chapter 5. Arrays and Strings



CHAPTER

SIX

AGGREGATE DATA STRUCTURES

6.1 The C struct

C has a facility for grouping data elements together in the form of a "record", which is called a struct. A
struct in C is sort of like a class (in languages with classes), except that (1) all members of the struct are
public (i.e., there is no way to "hide" members), and (2) there are no methods, only data members. Members
of a struct are often referred to as fields.

The following code defines a type called struct fraction that has two integer fields named numerator
and denominator. Note that a semicolon is required after the final curly brace of the declaration, as well as
after the declaration of each field.

struct fraction {
int numerator;
int denominator;

}; // don't forget the semicolon!

Note that the full name of the new type is struct fraction, not just fraction. Thus, if we want to create
a new fraction variable, we write:

struct fraction f1;

C uses the period (.) as the operator to access individual fields in a struct (similar to the way that the
period is used to access instance variables in a Java or Python object). The following code assigns values to
the two fields of our new variable, then prints out the contents of the struct:

f1.numerator = 3;
f1.denominator = 5;
printf("f1 is %d/%d\n", f1.numerator, f1.denominator);

6.1.1 Initializing structs

A syntax similar to array initialization can be used to initialize fields of a struct. For example, to declare
and initialize a new struct fraction, we could use the following:

struct fraction f2 = { 3, 5};

which would assign 3 to the numerator field and 5 to the denominator field. An explicit field assignment
syntax can also be used:

41



The Book of C, Release 2022.08

struct fraction f3 = { .denominator = 5, .numerator = 3 };

Note that using the explicit field assignment syntax, the field assignments do not need to appear in the same
order as the original declaration of the struct.

Annoyance: == does not work with structs

Unfortunately, the comparison for equality operator (==) does not work with structs. In fact, the code
if (f5 == f4) will not even compile. One way to address comparing structures is to write a function
to compare them, which we will discuss in the Functions chapter. Another way is to directly compare
the contents of memory occupied by two structs, which we will discuss in the Pointers and more arrays
chapter.

6.1.2 Copying structs

Conveniently, the = (assignment) operator can be used to copy the contents of one struct into another. The
copy is done in a field-by-field manner:

struct fraction f4 = { 2, 7 };
struct fraction f5 = f4; // f5 now has identical contents as f4

There is another way to copy structs (using the built-in memcpy function), but since this method requires
use of "pointers" we will defer discussion until the Pointers and more arrays chapter.

6.1.3 Arrays of structs and type aliases (typedef)

It is perfectly valid, and quite common, to have arrays of records. For example, we might want to have a
whole series of fractions stored in an array, as follows:

1 struct fraction numbers[100];
2 numbers[0].numerator = 22; // set the 0th struct fraction
3 numbers[0].denominator = 7;

The declaration on line 1, above, is a little bit of a mouthful, but reading from right-to-left can help: "an array
of 100 elements called numbers, where each element contains a struct fraction". To help simplify reading
and writing type complex declarations, C contains a mechanism for creating type aliases, using the keyword
typedef. The syntax goes typedef <original type> <type alias>, as follows:

1 typedef struct fraction fraction_t;
2 fraction_t numbers2[100];

Line 1 defines a type alias for struct fraction called fraction_t (a "fraction type"). Now, fraction_t can
be used where ever we might originally have used struct fraction. On line 2, an array of these fraction
structures is created, which is a tiny bit easier to read than the first array declaration.

42 Chapter 6. Aggregate Data Structures



The Book of C, Release 2022.08

6.1.4 Using sizeof with a struct and memory layout of a struct

The built-in sizeof function works quite happily with a struct. It returns the number of bytes occupied
by the struct in memory. As with other data types, either a variable name or a type name may be used as
the argument to sizeof. For example, consider the following code:

struct fraction f6 = { 1, 2};
printf("Size of f6: %lu\n", sizeof(f6));
printf("Size of struct fraction: %lu\n", sizeof(struct fraction));

On almost all machines today, the output of the above code will be:

Size of f6: 8
Size of struct fraction: 8

since the size of a single int is almost always 4 bytes.

No surprises there, right? Let's look at the following program, which defines a struct student containing
a name, class year, and age.

1 #include <stdio.h>
2 #include <stdlib.h>
3

4 struct student {
5 char name[32];
6 short class_year;
7 char age;
8 };
9

10 int main() {
11 struct student s = { "H. Sommers", 2026, 5 };
12 printf("An example student: %s, %d, %d\n", s.name, s.class_year, s.age);
13 printf("Size of a student struct: %lu\n", sizeof(struct student));
14 return EXIT_SUCCESS;
15 }

Compiling and running this code gives this output:

An example student: H. Sommers, 2026, 5
Size of a student struct: 36

Consider the size reported by the program, 36, and remember that a short is 2 bytes and char is 1 byte.
Last time I checked, 32 + 2 + 1 = 35! What's happening?!

When the compiler allocates memory on the stack or the heap for a struct, it may introduce "padding"
bytes to ensure that the entire struct fits within an even multiple of machine words. If the word size is 4
bytes, then the compiler will silently add sizeof(struct) % 4 bytes as "padding" to the end of the struct1.
So, in the struct student definition starting on line 3, above, there is one extra byte added by the compiler
to make the entire structure occupy a "word-aligned" number of bytes. A picture of how an actual struct
student looks in memory is thus like the following:

The padding inserted by the compiler is not usually something one needs to pay close attention to, but in
certain circumstances it does matter and it's good to be aware of this behavior.

1 http://en.wikipedia.org/wiki/Data_structure_alignment

6.1. The C struct 43

http://en.wikipedia.org/wiki/Data_structure_alignment


The Book of C, Release 2022.08

name class 
year

32 bytes

age

2 bytes
1 byte

pad

1 byte

Fig. 1: An struct that has "padding" inserted by the compiler.

Exercises

1. Assume that you have a text file with a series of student names, class years, and ages listed, like the
following:

Alice Z., 2020, 17
Bob Y., 2019, 19
Chelsea X., 2020, 18
Draco M., 2019, 20

Write a program that reads the text file contents from standard input (hint below) and stores each
student in a C struct in an array. After you've loaded the students, print each of them out on a separate
line, and print the average age (as a floating point number) at the end. (To format a floating point
number for output using printf, you can use the %f placeholder.)

You can assume any reasonable upper-bound for the number of characters in a name, and any
reasonable upper-bound for the number of students. That is, you should overallocate space required
for the name and number of students, within reason. An upper bound for student name might be 64,
and an upper bound for the number of students might be 100.

You can use the fgets call to read data from standard input (just as you've already done for keyboard
input), and use "shell redirection" to cause the contents of a text file to be treated as stdin to your
program. Say that you've compiled the code to an executable called sreader and the student data is
in the text file students.txt, you could do the redirection trick by typing:

$ ./sreader < students.txt

2. Extend the above program to do the following. After all the student records are loaded, repeatedly ask
for a student first name until the special string DONE is entered. For each valid name entered, search for
the name in the array of records and print the values within the relevant records found (note that more
than one student may match the query). If no student is found matching the name, print a message to
that effect. You should allow the search (name) entered to be compared in a case-insensitive way. For
example, the string "Bob" should match the 2nd record shown above. As another example, the string
"E" should match both "Alice Z." and "Chelsea X." (both have "e"'s, but the other two names do not).
Consider using the built-in strcasestr function2 to compare strings.

3. Write a program that asks for values for two fractions (numerator and denominator for each), and
computes and prints the sum of the fractions. Store the result of the sum in a new struct fraction
prior to printing the sum.

2 http://man7.org/linux/man-pages/man3/strstr.3.html

44 Chapter 6. Aggregate Data Structures

http://man7.org/linux/man-pages/man3/strstr.3.html


CHAPTER

SEVEN

FUNCTIONS

All programming languages have built-in mechanisms for structuring and modularizing the code. The
main mechanism that C provides is the subroutine, or function. In fact, C provides little beyond this basic
technique1.

Good program design in C (and many other programming languages) involves creating what are typically
short functions that accomplish one task, and in which there is little or no duplication of functionality. The
main reasons for creating short, single-purpose functions is to make them more easily testable and to make
them easier to read. There are many benefits to having one place in the code where each major component
is implemented, including making it easier to modify the code and making it easier to test. These ideas
are so important in programming that they are present in many different design principles, such as the
Abstraction Principle2, the Don't Repeat Yourself (DRY) principle3, and structured programming4.

The Abstraction Principle

"Each significant piece of functionality in a program should be implemented in just one place in the
source code. Where similar functions are carried out by distinct pieces of code, it is generally beneficial
to combine them into one by abstracting out the varying parts."

Benjamin C. Pierce, "Types and Programming Languages" (http://www.cis.upenn.edu/~bcpierce/tapl/).

7.1 Function syntax

A function has a name, a comma-separated list of parameters, the block of code it executes when called,
and, optionally, a return value. The basic function definition syntax is:

return-type function-name(parameters) { code-block }

For example, here is a function that computes and returns n! (n factorial):

1 /*
2 * iteratively computes and returns n!
3 * if n < 0, returns 0.

(continues on next page)

1 There are advanced techniques that build upon the basic mechanisms available in C to, for example, mimic capabilities found in
object-oriented programming languages. As a introductory text, this book will not go into any of those techniques. One additional
technique we cover in this book is found in the chapter on Program structure and compilation, in which we discuss a technique that
provides a type of information hiding by enabling functions to remain "hidden" on a per-file basis.

2 Abstraction principle entry (Wikipedia)
3 Don't repeat yourself (Wikipedia)
4 Structured programming (Wikipedia)

45

http://www.cis.upenn.edu/~bcpierce/tapl/
http://en.wikipedia.org/wiki/Abstraction_principle_(programming)
http://en.wikipedia.org/wiki/Don%27t_repeat_yourself
http://en.wikipedia.org/wiki/Structured_programming


The Book of C, Release 2022.08

(continued from previous page)

4 */
5 int factorial(int n) {
6 if (n < 0) {
7 return 0;
8 }
9 int result = 1;

10 for (int i = 2; i <= n; i++) {
11 result *= i;
12 }
13 return result;
14 }

We have seen most of this syntax already (with the main function), but it is worth reviewing.

1. On line 5, the type declaration of the function is given, and shows that the data type of the return
value of the function is int, and that the function takes a single int parameter, named n. The function
is, of course, named factorial.

2. There can be any number of parameters to a function (though a small number of parameters is
strongly preferable). Each parameter is separated by a comma, and follows the basic syntax of a
variable declaration, which is: type-name variable-name.

3. Any parameters to the function are passed by value. This means that the function receives copies of the
arguments passed to it by the caller. If any modifications are made to those copies, they have zero effect
on the variables or values passed to the function --- any changes are confined (local) to the function.
We will have more to say about pass-by-value function call semantics, below.

4. The return statement delivers a value from the function back to the caller of the function. There are
return statements on lines 7 and 13 of this function. The first return handles the special case where
n is less than 0, thus n! is undefined.

5. Any variables declared inside the function are local to the function, just as with Java, Python, and
many other programming languages. Thus, the parameter variable n and the local variable result
only exist while the function is being executed.

To call the factorial function, a programmer uses parentheses after the function name, passing any required
arguments between the parens:

#include <stdio.h>
#include <stdlib.h>

// ...

char buffer[8];
printf("I'll compute n! for you. What should n be? ");
fgets(buffer, 8, stdin);
n = atoi(buffer);
int result = factorial(n);
printf ("%d! is %d\n", n, result);

So far, none of this should be particularly surprising. You may have already seen "public static methods" in
Java (e.g., main!), which are very similar to C functions, or you may have already seen functions in Python
(defined using the def keyword). Both public static methods in Java and functions in Python behave very
similarly to functions in C. In fact, all of these languages use pass-by-value semantics for parameters.

46 Chapter 7. Functions



The Book of C, Release 2022.08

7.1.1 main is where it all begins

Every C program must have a main function. An attempt to compile a program in C which does not have a
main function defined somewhere will result in an error. Unlike Java, where any number of class definitions
can have a public static void main definition, it's a highlander situation in C: there can be only one5.

7.1.2 Function naming restrictions and conventions

The only requirement for naming C functions is similar to many programming languages: function names
must either begin with a letter or underscore, and can only include numbers, letters, and underscores.
Conventionally, function names that start with an underscore typically mean that the function should be
treated as a "private" library function, off limits to other programmers.

As far as naming conventions, there are a wide variety of practices in existence. Some programmers like
to name their functions using lowerCamelCase, which is common in languages such as Java, or using
snake_case, which is common in Python and Ruby. In the C standard library, a common practice is to use
short, abbreviated names consisting of a single word (e.g., tolower). Still others like to use the abomination
referred to as Hungarian Notation6. A fairly widely used convention in C is snake_case, which is the
practice followed in this book.

7.2 Data types for parameters and return values

There are, technically speaking, no restrictions on the data types of parameters or return values for functions
in C. Functions in C can accept all the basic data types as parameters, as well as struct types, arrays, and
as we will see soon, memory pointers to any data type.

Likewise, there are no syntactic restrictions on the data type of the return value from a function. C does
not permit multiple return values, unlike some other languages, but it is permissible to return a struct type
that contains multiple fields (or, as we will later see, a pointer to a memory block containing multiple data
items).

C-ing and Nothingness --- void

void is a type formalized in ANSI C which means "nothing". To indicate that a function does not return
anything, use void as the return type. If a function does not take any parameters, its parameter list may
either be empty (i.e., ()), or it can contain the keyword void to indicate that the function does not take
parameters. It is more common and conventional in C to use an empty parameter list for functions that
don't take parameters.

5 Highlander (film) (Wikipedia)
6 Hungarian notation (Wikipedia)

7.2. Data types for parameters and return values 47

http://en.wikipedia.org/wiki/Highlander_(film)
http://en.wikipedia.org/wiki/Hungarian_notation


The Book of C, Release 2022.08

7.2.1 Parameters to functions are passed by value

The key thing to remember for function parameters is that they are passed by value. (Note that Java also
uses pass-by-value semantics for method parameters.) Passing by value means that the actual parameter
values are copied into local storage (on the stack). This scheme is fine for many purposes, but it has two
disadvantages:

1. Because the function invocation ("callee") has its own copy (or copies) of parameters, modifications
to that memory are always local to the function. Therefore, value parameters do not allow the callee to
communicate back to the caller. The function's return value can communicate some information back
to the caller, but not all problems can be solved with the single return value.

"Wait!", you may exclaim. "Can't I pass in a list variable in Python or some object variable in Java and
modify that variable within the function or method I call?" The answer is not really. While it's true that
you can modify a list that's passed into a function in Python, the parameter variable in the function
really just receives a copy of a reference to the list, not the list itself. Same thing for Java: when you
pass an object into a method, you're really passing a reference to an object into the method. The method
receives a copy of the reference, allowing you to manipulate that object. We can get similar behavior
with passing "pointers" into functions in C, which we'll see in the next chapter.

2. Sometimes it is undesirable to copy the value from the caller to the callee because the value is large
and copying is expensive, or because, for some reason, copying the value is undesirable.

7.2.2 Example 1: an anti-example of swapping two values

As mentioned above, a key implication of pass-by-value function parameters is that the function gets local
copies of any parameter values. Say that we want to exchange two values via a function. For example, we
want to swap the numerator and denominator in a fraction struct. This is some code that would not work:

#include <stdlib.h>

typedef struct fraction {
int numerator;
int denominator;

} fraction_t;

void swap_numerator_denominator1(fraction_t frac) {
int tmp = frac.numerator;
frac.numerator = frac.denominator;
frac.denominator = tmp;

}

void swap_numerator_denominator2(int nancy, int donkey) {
int tmp = nancy;
nancy = donkey;
donkey = nancy;

}

int main() {
fraction_t f1 = { 1, 3};
swap_numerator_denominator1(f1); // swap? uh, no.
swap_numerator_denominator2(f1.numerator, f1.denominator); // no, again
return EXIT_SUCCESS;

}

48 Chapter 7. Functions



The Book of C, Release 2022.08

Epic fail, times 2. For each of the swap functions, the exchange happens only inside the function; the caller
will never see any swap of nancy and donkey. The fact that the function takes a struct here is irrelevant for
attempt 1; even if we wrote a swap to take two int parameters (i.e., attempt 2), there is no way this is going
to happen. Sorry. In the next chapter on Pointers and more arrays, we will solve this problem.

7.2.3 Example 2: passing a struct to and from a function

Ok, enough of the anti-examples. Here is an example of passing and returning a struct. We'll write a
function to add two fractions together and return a new fraction. A few things to note about the code below:

• The computation of the greatest common divisor is recursive.

• The use of abs in the least common multiple function requires #include <stdlib.h> at the top of the
source code.

• The add_fractions function separately computes the denominator and numerator of the result of the
addition, then just constructs and returns a new fraction_t. For both the fraction_t parameters
and the return value, entire copies are made to get the arguments "in" to the function and to get the
result "out".

// compute the greatest common divisor, recursive style
int gcd(int a, int b) {

if (b == 0) {
return a;

} else {
return gcd(b, a % b);

}
}

// compute the least common multiple
int lcm(int a, int b) {

return abs(a * b) / gcd(a, b);
}

// add a couple fractions together
fraction_t add_fractions(fraction_t f1, fraction_t f2) {

int denom = lcm(f1.denominator, f2.denominator);
int numer = (denom / f1.denominator) * f1.numerator +

(denom / f2.denominator) * f2.numerator;
fraction_t result = { numer, denom };
return result;

}

7.2.4 Example 3: passing an array to a function

Passing an array parameter to a function is somewhat different in nature than the other parameter data
types we've seen:

1. It is often the case that it is not possible to know the correct array length when declaring the formal
parameter in the function declaration. This is actually a good thing in disguise: it forces us to write a
more general function instead of one that specifies an array of a certain size.

For example, say we want to write a function to multiply several fractions together, where each fraction
is an element of an array. We want to write the function so that it can handle any array size. We write it

7.2. Data types for parameters and return values 49



The Book of C, Release 2022.08

as shown below. Notice that we leave the array size blank in the formal parameter, and pass a second
parameter that specifies the number of array elements we should examine. Since an array in C does
not know its own size, we are forced to pass its size separately.

fraction_t multiply_fractions(fraction_t fraclist[], int num_fractions) {
fraction_t result = { 1, 1};
for (int i = 0; i < num_fractions; i++) {

result.numerator *= fraclist[i].numerator;
result.denominator *= fraclist[i].denominator;

}
return result;

}

2. The second issue that makes array parameters somewhat different than any other data type we've seen
thus far is that an array variable refers to the memory address of the first element in the array. As a result,
it is possible to modify the contents of an array that is passed to a function. Pass-by-value semantics
still apply; the function simply receives a copy of the memory address at which the array begins. Here
is an example of a function that modifies a C string by overwriting any trailing whitespace characters
with the null-character. Notice that for C strings we do not need to pass the size of the string, since,
by convention, the null character marks the end of the string (and thus we can just use the built-in
strlen function).

#include <stdio.h>
#include <stdlib.h>

void strip_trailing_whitespace(char string[]) {
int index = strlen(string)-1;
while (index >= 0) {

if (isspace(string[index])) {
string[index] = '\0';
index -= 1;

} else {
// as soon as we encounter first non-whitespace
// character, get out of loop
break;

}
}

}

int main() {
char s[128] = "hello\n\n\t";
strip_trailing_whitespace(s);
printf("%s\n", s);
return EXIT_SUCCESS;

}

How does this jive with pass-by-value? What happens here is that s in main holds the memory address of
the array, which is allocated on the stack of main. When the strip_trailing_whitespace function is called,
the value of s is copied to the parameter string, but the value itself is a memory address. So the string array
inside strip_trailing_whitespace holds the same memory address as s back in main. Thus, these two
variables refer to the same array in memory, as depicted in the figure below. As a result, when we modify the
string inside the function, the changes can be observed when we return back to main.

50 Chapter 7. Functions



The Book of C, Release 2022.08

Caller

char s[128] = "hello\n\n\t";
strip_trailing_whitespace(s)

Function Invocation

strip_trailing_whitespace(char string[]) 

Fig. 1: An array parameter gets a copy of the memory address of the array passed into the function, and thus
"points" back to the same array contents as can be observed outside the function.

No function overloading or default parameters in C

In some languages, e.g., C++, it is permitted to have more than one function definition with the same
name, as long as the two definitions differ in the number and data type(s) of parameters. Other languages
permit "default" parameters, which means that if a caller chooses not to pass a particular argument, the
parameter gets a default value. Unfortunately, C's syntax does not permit either of these fairly convenient
techniques.

7.2.5 A longer example

We'll wrap up this section with one more example. A few things to note:

• The struct studenthas an embedded struct field (struct course_grade). Actually, an array of struct
course_grade. One struct student would occupy a pretty large chunk of memory. It is left to you
to compute how many bytes, and where any padding is silently inserted by the compiler.

• In struct student we need to keep the field num_courses_completed to know how many array
elements in courses_completed are meaningful.

• The typedefs on lines 16-17 help to save a few keystrokes with the struct usage.

• In compute_gpa, we don't need to specify the size of the grade_t array, but we do need an additional
parameter to tell us how many entries in the array we should consider.

• The initialization syntax for the array of student_t just follows the rules we've discussed for array
and struct initialization. It is perfectly valid to nest the curly braces where necessary to achieve the
correct field initializations.

1 #include <stdio.h>
2 #include <stdlib.h>
3

4 struct course_grade {
(continues on next page)

7.2. Data types for parameters and return values 51



The Book of C, Release 2022.08

(continued from previous page)

5 char course_name[32];
6 char letter_grade;
7 };
8

9 struct student {
10 char name[32];
11 short class_year;
12 int num_courses_completed;
13 struct course_grade courses_completed[48];
14 };
15

16 typedef struct student student_t;
17 typedef struct course_grade grade_t;
18

19 double compute_gpa(grade_t course_list[], int num_courses) {
20 double sum = 0.0;
21 for (int i = 0; i < num_courses; i++) {
22 if (course_list[i].letter_grade == 'A') {
23 sum += 4.0;
24 } else if (course_list[i].letter_grade == 'B') {
25 sum += 3.0;
26 } else if (course_list[i].letter_grade == 'C') {
27 sum += 2.0;
28 } else if (course_list[i].letter_grade == 'D') {
29 sum += 1.0;
30 }
31 }
32 return sum / num_courses;
33 }
34

35 void print_student(student_t s, double gpa) {
36 printf("%s, Class of %d, GPA: %2.2f\n", s.name, s.class_year, gpa);
37 }
38

39 int main() {
40 student_t students[2] = {
41 { "A. Student", 2019, 3, { {"Flowerpot construction", 'A'},
42 {"Underwater basketweaving", 'C'},
43 {"Dog grooming", 'B'} },
44 },
45 { "B. Smart", 2018, 4, { {"Flowerpot construction", 'B'},
46 {"Underwater basketweaving", 'C'},
47 {"Cat dentistry", 'C'},
48 {"Dog grooming", 'C'}, }
49 }
50 };
51 int num_students = sizeof(students) / sizeof(student_t);
52

53 for (int i = 0; i < num_students; i++) {
54 double gpa = compute_gpa(students[i].courses_completed, students[i].num_courses_

↪→completed);
55 print_student(students[i], gpa);

(continues on next page)

52 Chapter 7. Functions



The Book of C, Release 2022.08

(continued from previous page)

56 }
57 return EXIT_SUCCESS;
58 }

Compiling and running this code gives the following output:

A. Student, Class of 2019, GPA: 3.00
B. Smart, Class of 2018, GPA: 2.25

7.3 Storage classes, the stack and the heap

Static variables and the static storage class

The keyword static has two, somewhat different, meanings and usages in C.

The first usage is that variables within functions can be prefixed with the static keyword to indicate that
their value is retained across invocations of the function. For example, consider the following function:

void myfunction() {
static int i = 0;
i += 1;
printf("i is now %d\n", i);

}

Because of the static keyword, the value stored in i is retained across multiple calls of myfunction.
Without the static keyword, the output of the function would always be i is now 1.

The second meaning of static in C is to indicate that functions or variables defined outside any function
should be local to the source file in which they are defined. In Program structure and compilation we will
discuss header files, compilation, and issues related to this usage of static in more detail.

There are two essential "storage classes" in C: automatic and static. Static storage is somewhat of an advanced
concept, and you can refer to the sidebar for a brief discussion.

"Automatic" variables are what we have used exclusively thus far: they are variables that come into
existence when a code block is entered, and which are discarded when a code block is exited. This type of
allocation and deallocation is done on the call stack of the running program. Recall that all parameters and
local variables are allocated on the stack in a last-in, first-out manner. This is exactly the idea behind the
"automatic" storage class --- memory is automatically assigned on the stack7.

It's worth repeating that all variables in examples we've considered to this point are "automatic" and
allocated on the stack. That goes for strings, arrays of various sorts, structures, etc. Most often, we've
declared some local variables in main (which are allocated on the stack of main), and passed parameters
into functions (which results in the creation of copies of those parameters in the stack frame of the called
function).

7 The compiler is responsible for this magic. It must emit the right code so that the stack is managed correctly and variables come
into existence and go away at exactly the right point in execution.

7.3. Storage classes, the stack and the heap 53



The Book of C, Release 2022.08

Exercises

1. Write a function that takes two struct fractions, a and b and compares them for equality. Return
-1 if a is less than b, 0 if they are equal, and 1 if a is greater than b.

2. Refactor and modularize the code in exercise 1 in the struct chapter. At the very least, write functions
to parse a single line into a struct, and to print out a struct.

3. Write a text-based program to play a version of the game show "Wheel of fortune". Many of you have
probably written a similar program in Python or another language. Test your mettle by writing it in
C.

54 Chapter 7. Functions



CHAPTER

EIGHT

POINTERS AND MORE ARRAYS

The C programming language has a somewhat split personality. On the one hand, it is a high-level program-
ming language1 in that it provides basic control and data abstractions so that a programmer does not have to
work in low-level assembly code. On the other hand, it is often considered a fairly low-level language2 due
to the fact that it provides only simple data types that directly reflect standard hardware capabilities (e.g.,
integers, floating point numbers, and simple character strings) and that it allows programmers to directly
manipulate memory and memory addresses. In this chapter, we focus on C's capabilities for enabling a
programmer to directly manipulate memory and memory addresses.

Process address spaces

As a bit of context for discussing memory addresses and pointers, consider the following depiction of the
address space of a running program (a "process").

1 http://en.wikipedia.org/wiki/High-level_programming_language
2 http://en.wikipedia.org/wiki/Low-level_programming_language

55

http://en.wikipedia.org/wiki/High-level_programming_language
http://en.wikipedia.org/wiki/Low-level_programming_language


The Book of C, Release 2022.08

0x0000

0xFFFF

program code ("text" 
segment)

"static" data (global 
variables)

heap (grows "up")

stack (grows "down")

free space

A process in memory typically has (at least) 4 different portions of memory ("segments") dedicated to
different purposes. For example, the binary machine code for the program must reside in memory, and a
segment is dedicated to storage for global ("static") variables. These portions of memory typically remain
constant in size, e.g., the amount of memory used for program code does not need to change. There are
two segments, however, that are designed to grow and shrink over the lifetime of a process: the stack and
the heap. The stack holds data for each function in progress, including space for local variables, space for
parameters, and space for return values. For each function call and return, the size of the stack will grow
or shrink, respectively. The heap contains storage for dynamic data structures, e.g., data objects in linked
lists, which are managed by the programmer.

8.1 Pointers

A pointer is a variable that holds a memory address. The C language allows a programmer to manipulate
data indirectly through a pointer variable, as well as manipulate the memory address itself stored in the
pointer variable.

56 Chapter 8. Pointers and more arrays



The Book of C, Release 2022.08

8.1.1 Declaration syntax

Declaring a new pointer variable is accomplished by using the syntax <data-type> *<variable-name>;
The asterisk symbol between the data type and variable name indicates that the variable holds a memory
address that refers to a location holding the given data type. For example, the following declaration creates
a variable p that contains a memory address referring to a location holding an int type.

int *p; // p points to ???

Recall that C does not do any automatic initialization of variables. Thus, the variable p will hold an undefined
memory address after the above declaration. To initialize the pointer so that it points to "nothing", you use
NULL in C, which is defined as the special address 0.

int *p = NULL; // p points to nothing

The figure below depicts the state of p after this assignment

0
int *p

Fig. 1: p is NULL, or holds the special address 0.

8.1.2 &: Address-of operator

It is often the case that we need to obtain the address of a variable in memory in order to indirectly
manipulate its contents through a pointer variable. The address-of operator --- & --- is used for this purpose.
For example, the following two lines of code create an integer variable i initialized with contents 42, and a
pointer to int variable p which is initialized with the address of i. Notice that the & goes before the variable for
which we want to obtain the address.

int i = 42; // i directly holds the integer 42 (on the stack)
int *p = &i; // p holds the address of i

Below is an example depiction of the contents of memory assuming that the variable i is stored at (hex)
address 0x1004, and p is stored in the next four bytes. (Note that this figure assumes 32 bit addressing, since
p --- which holds a memory address --- occupies exactly 4 bytes, or 32 bits, in this diagram.)

8.1.3 Dereferencing, or "following" a pointer

Now that p "points to" the contents of i, we could indirectly modify i's contents through p. Essentially
what we want to do is to "follow" (or "dereference") the pointer p to get to the integer that its address refers
to (i.e., i), and modify those contents.

The asterisk (*) is used as the dereference operator. The basic syntax is: * <pointer-variable>, which
means "obtain the contents of the memory address to which <pointer-variable> refers. (Notice that the
asterisk goes to the left of the pointer variable that we wish to dereference.) We could use this syntax to
increment i by one, indirectly through p, as follows:

8.1. Pointers 57



The Book of C, Release 2022.08

42

1004

address 
(hex)

1000

1004

1008

100B

i

p

memory 
contents

Fig. 2: i directly holds the value 42, and p holds the address of i.

int i = 42; // i directly holds the integer 42
int *p = &i; // p holds address of i
*p = *p + 1; // dereference p (follow pointer), add one to int to which

// p points, then assign back to int to which p points
printf("%d\n", i); // -> will print 43

A canonical example for why pointers can be useful is for implementing a function that successfully swaps
two values. Here is the code to do it:

#include <stdio.h>
#include <stdlib.h>

void swap(int *a, int *b) {
int tmp = *a;
*a = *b;
*b = tmp;

}

int main() {
int x = 42, y = 13;
printf("x is %d, y is %d\n", x, y);
swap(&x, &y);
printf("x is %d, y is %d\n", x, y);
return EXIT_SUCCESS;

}

The key to this code is that we declare the swap function to take two pointers to ints as parameters (rather
than the two integers themselves). In main, we pass copies of the addresses of x and y, as shown in the figure
above. Inside swap, therefore, a holds the memory address of x (which is back on main's stack) and b holds
the memory address of y (which is also back on main's stack). Through the pointers, we indirectly modify
the contents of x and y.

58 Chapter 8. Pointers and more arrays



The Book of C, Release 2022.08

42 13

in swap

in main

x y

a b

Fig. 3: Inside the swap function, a holds the address of x back on main's stack and b holds the address of y
also on main's stack. With pass-by-value semantics, a gets a copy of the address of x (likewise, b gets a copy
of the address of y).

Uninitialized pointers

When using pointers, there are two entities to keep track of: the pointer itself, and the memory address
to which the pointer points, sometimes called the "pointee". There are three things that must be done for
a pointer/pointee relationship to work correctly:

1. The pointer must be declared and allocated

2. The pointee must be declared and allocated

3. The pointer (1) must be initialized so that it points to the pointee (2)

A common error is to do (1), but not (2) or (3). For example:

int *p; // p points to ???
*p = 13; // follow p to some unknown memory location and put 13 there

Since C does not do any initialization for the programmer, just declaring a pointer (i.e., step 1) isn't enough
for using a pointer. In the above code, p points to some undefined memory location and the act of writing
the integer 13 to that location may result in a crash. The crash will likely appear to be random, but is
entirely due to the fact that p was never properly initialized.

To fix this error, p must point to some actual int in memory, for example:

int q = 99;
int *p = &q; // p now is initialized to hold the address of q
*p = 13;

It is worth noting that the scan-build (see an earlier discussion on scan-build) static analysis tool can detect
problems with uninitialized pointers.

8.1. Pointers 59



The Book of C, Release 2022.08

8.1.4 Pointers to struct's

Pointer variables can refer to any data type, including struct variables. For a struct, the syntax for
handling pointers can be a bit tricky. To illustrate the trickiness, here is a function that exchanges (swaps)
the numerator and denominator of a struct fraction (along with a bit of code to call the function):

void flip_fraction(struct fraction *f) {
int tmp = (*f).denominator;
(*f).denominator = (*f).numerator;
(*f).numerator = tmp;

}

struct fraction frac = { 1,2};
flip_fraction(&frac);

Why do we need to use parentheses around the (*f)? The reason is that the field selection operator (.)
has higher operator precedence than the dereference operator. Thus, a statement like *f.numerator simply
does not work: it gets treated by the compiler as *(f.numerator). If f is a pointer, f.numerator just doesn't
make any sense. As a result, it is necessary to first dereference the struct pointer, then access the numerator
field.

Because of the awkwardness of requiring the parens for (*f).numerator to work right, C provides an
operator to access a struct field through a pointer: the arrow operator (->):

void flip_fraction(struct fraction *f) {
int tmp = f->denominator;
f->denominator = f->numerator;
f->numerator = tmp;

}

The above function using the arrow operator has exactly the same effect as the more unwieldy version of the
flip_fraction function above.

8.1.5 Example operating system call with pointers: gettimeofday

A standard function for getting the current system time in seconds and microseconds is to use the
gettimeofday call. This function is declared in the header file <sys/time.h> and has the following signature:

int gettimeofday(struct timeval *, struct timezone *);

where the first argument is a pointer to a struct timeval, and the second argument is a pointer to a
struct timezone. A struct timeval has two fields: tv_sec and tv_usec, which contain the seconds and
microseconds after the UNIX epoch (Midnight, January 1, 1970), respectively. This function fills in these
fields in the struct timeval passed to the function (i.e., it modifies the two fields of this struct). NULL is
normally passed for the timezone argument.

If a programmer wants to get the current system time, a standard way to use this function is to declare
a struct timeval on the stack of the currently executing function (i.e., as a local variable), then pass the
address of this struct to gettimeofday, as follows:

struct timeval tv;
gettimeofday(&tv, NULL);
// tv.tv_sec and tv.tv_usec now have meaningful values filled in by the gettimeofday␣
↪→function

60 Chapter 8. Pointers and more arrays



The Book of C, Release 2022.08

This pattern of passing the address of a stack-allocated struct is fairly common when making various system
calls.

The const qualifier

The keyword const can be added to the left of a variable or parameter type to declare that the code using
the variable will not change the variable. As a practical matter, use of const is very sporadic in the C
programming community. It does have one very handy use, which is to clarify the role of a parameter in
a function prototype. For example, in:

void foo(const struct fraction* fract);

In the foo() function prototype, the constdeclares that foo()does not intend to change the struct fraction
pointee which is passed to it. Since the fraction is passed by pointer, we could not know otherwise if
foo() intended to change our memory or not. Using const, foo() makes its intentions clear. Declaring
this extra bit of information helps to clarify the role of the function to its implementor and caller.

8.2 Advanced C Arrays and Pointer Arithmetic

8.2.1 Array/pointer duality

Interestingly, C compilers do not meaningfully distinguish between arrays and pointers --- a C array variable
actually just holds the memory address of the beginning of the array (also referred to as the base address of
the array). In the following code, we illustrate the duality of arrays and pointers by creating 10-element int
array (fibarray) and a pointer to an int (fibptr1). Notice that we directly assign the array variable to an
int *, which is perfectly legal in C and nicely illustrates the duality between pointers and arrays:

int fibarray[] = { 1, 1, 2, 3, 5, 8, 13, 21, 34, 55 };
int *fibptr1 = fibarray;

An alternative (and somewhat more explicit) syntax for obtaining the base address of the array is to use
the address-of operator with the first element of the array. The following declaration creates yet another
pointer variable that refers to the beginning of the array:

int *fibptr2 = &fibarray[0]; // get the memory address of the first element of the array

Array names are constant pointers

One subtle distinction between an array and a pointer is that the array name where it is declared in the
code cannot be modified. In other words, an array name cannot be made to refer to a different array or
pointer in memory. For example:

int ints[100]
int *p;
int i;

ints = NULL; // NO: cannot change the base address pointer
ints = &i; // NO
ints = ints + 1; // NO
ints++; // NO

8.2. Advanced C Arrays and Pointer Arithmetic 61



The Book of C, Release 2022.08

8.2.2 Pointer arithmetic

The + operator can be used with pointers to access memory locations that reside at some offset from a pointer.
For example, say that we have the following variable: int *i. i+j (where j is an integer, not a pointer) is
interpreted by the compiler as i + j * sizeof(int). Thus, i+j yields the memory address of the jth int
after the address i (where we start counting at 0, as you should expect).

A somewhat longer example of adding a pointer and integer together is shown below:

int fibarray[] = { 1, 1, 2, 3, 5, 8, 13, 21, 34, 55 };
int *fibptr1 = fibarray;

int a = *(fibptr + 0); // add 0*sizeof(int) to fibptr address, then dereference (yields␣
↪→the value 1)
int b = *(fibptr + 2); // add 2*sizeof(int) to fibptr address, then dereference (yields␣
↪→the value 2)

Again, the syntax fibptr + 2 is interpreted by the compiler as "get the address of the 2nd integer following
the address fibptr".

In fact, array indexing syntax works identically to pointer arithmetic. As a result, square-brace indexing can
be used with pointer variables. Moreover, the nice thing about this syntax is that dereferencing is automatic.
Continuing the code above:

int c = fibptr1[5] // add 5*sizeof(int) to fibptr1 address,
// then dereference (automatically!) (yields 8)

A totally bizarre implication of the way that C handles array indexing and pointers is that the array name
and index value can be inverted!

int array[] = { 1, 2, 3};
printf("%d\n", array[1]); // "normal" indexing
printf("%d\n", 1[array]); // bizarro inverted indexing, but legal and identical to␣
↪→previous line!
printf("%d\n", *(array+1)); // pointer arithmetic syntax
printf("%d\n", *(1+array)); // pointer arithmetic syntax, with operands reversed

The above code is purely an illustration --- don't write code with inverted indexing! Although it is legal, it
is a "feature" that makes the code harder to read since nobody writes indexes like that.

8.3 Dynamic memory allocation

We started this chapter by outlining how memory is organized within a single running program, or process
(see Process address spaces, above). So far, we have just used local and parameter variables, which result
in stack-allocated memory. In this section, we discuss how to dynamically allocate and deallocate blocks of
memory on the heap. C requires that a program manually manage heap-allocated memory through explicit
allocation and deallocation. In contrast, a language like Java only requires that a programmer explicitly
allocate memory, but the language runtime handles automatic deallocation through a process called garbage
collection.

62 Chapter 8. Pointers and more arrays



The Book of C, Release 2022.08

8.3.1 malloc and free

The built-in functions malloc and free are used to manually allocate and deallocate blocks of heap memory.
These functions are declared in the header file <stdlib.h> (i.e., you must #include this file) and work as
follows:

Pointing into the void

Notice that the malloc function returns a "pointer to void" (void *), and free takes a void * as a
parameter. By convention in C, a pointer which does not point to any particular type is declared as
void*. Sometimes void* is used to force two bodies of code not to depend on each other, since void*
translates roughly to "this points to something, but I'm not telling you (the client) the type of the pointee
exactly because you do not really need to know." That's exactly the case with malloc and free: the malloc
function cannot possibly know what the caller wants the new memory block allocated on the heap to
contain, and neither can the free function know what data type some memory block points to.

Note that a void * cannot be dereferenced --- the compiler prevents this. The pointer must be cast to a
pointer to some concrete type in order to be dereferenced.

Also, interestingly, NULL is usually defined as (void*)0.

void* malloc(size_t size)
malloc takes one parameter: the number of bytes to allocate on the heap. It returns a "generic pointer"
(i.e., void *) that refers to a newly allocated block of memory on the heap. If there is not enough
memory on the heap to satisfy the request, malloc returns NULL.

void free(void* block)
The mirror image of malloc, free takes a pointer to a heap block previously returned by a call to
malloc and returns it to the heap for re-use. After calling free, the caller should not access any part
of the memory block that has been returned to the heap.

Note that all of a program's memory is deallocated automatically when it exits, so a program technically
only needs to use free during execution if it is important for the program to recycle its memory while it
runs --- typically because it uses a lot of memory or because it runs for a long time. However, it is always
good practice to free what ever you malloc. You should not rely on the fact that a program does not run
long or that you think it does not use a lot of memory.

Here is some example code that uses malloc and free to allocate a block of struct fraction records
(basically an array, but not declared as an array), fill each one in with user input, invert each one, then print
them all out. Notice that each of the functions get_fractions, invert_fractions, and print_fractions
accesses each struct fraction in different ways: by index, and by pointer arithmetic. Note specifically
that the invert_fractions function modifies the fracblock pointer (by "incrementing it by 1, which makes
the pointer advance to the next struct fraction), but since that function just gets a copy of the pointer to
the struct fraction this is totally ok.

1 #include <stdio.h>
2 #include <stdlib.h> // for malloc and free
3

4 struct fraction {
5 int numerator;
6 int denominator;
7 };
8

9 void get_fractions(struct fraction *fracblock, int numfrac) {
10 char buffer[32];

(continues on next page)

8.3. Dynamic memory allocation 63



The Book of C, Release 2022.08

(continued from previous page)

11 for (int i = 0; i < numfrac; i++) {
12 printf("Enter numerator for fraction %d: ", i+1);
13 fgets(buffer, 32, stdin);
14 int numerator = atoi(buffer);
15 printf("Enter denominator for fraction %d: ", i+1);
16 fgets(buffer, 32, stdin);
17 int denominator = atoi(buffer);
18

19 // use array syntax to fill in numer/denom for the ith fraction
20 fracblock[i].numerator = numerator;
21 fracblock[i].denominator = denominator;
22 }
23 }
24

25 void invert_fractions(struct fraction *fracblock, int numfrac) {
26 for (int i = 0; i < numfrac; i++) {
27 int tmp = fracblock->numerator;
28 fracblock->numerator = fracblock->denominator;
29 fracblock->denominator = tmp;
30

31 fracblock += 1; // pointer arithmetic:
32 // advance the pointer by 1 struct fraction
33 }
34 }
35

36 void print_fractions(struct fraction *fracblock, int numfrac) {
37 for (int i = 0; i < numfrac; i++) {
38 // use pointer-arithmetic syntax to get numerator/denominator
39 // for each fraction
40

41 printf("%d: %d/%d\n", i+1, (fracblock+i)->numerator,
42 (fracblock+i)->denominator);
43 }
44 }
45

46 int main() {
47 char buffer[32];
48 printf("How many fractions to make? ");
49 fgets(buffer, 32, stdin);
50 int numfrac = atoi(buffer);
51

52 // allocate a block of numfrac fractions from the heap
53 struct fraction *fractions = malloc(sizeof(struct fraction) * numfrac);
54

55 // call function to "fill-in" each fraction
56 get_fractions(fractions, numfrac);
57 invert_fractions(fractions, numfrac);
58 print_fractions(fractions, numfrac);
59

60 free(fractions); // return block of fraction memory to the heap
61

62 return EXIT_SUCCESS;
(continues on next page)

64 Chapter 8. Pointers and more arrays



The Book of C, Release 2022.08

(continued from previous page)

63 }

8.3.2 Memory leaks and dangling pointers

Note that in the above example code, we have exactly 1 call to malloc and exactly 1 matching call to free.
If you do not have a matching free call for each malloc, your program has a memory leak. Memory leaks
are especially problematic for long-running programs (e.g., web browsers are often implicated in memory
leak problems3). The following program is one example of a pretty horrible leak: there is a malloc call in a
loop, but no matching free. Even worse, we completely lose the ability to access the memory block in the
previous iteration of the loop by re-assigning to memory_block each time through the loop. Note also that
assigning NULL doesn't free a block; it simply makes a block inaccessible to the program.

for (int i = 0; i < BIGNUMBER; i++) {
char *memory_block = malloc(1024*1024); // allocate a chunk on the heap
// do nothing else!

}
memory_block = NULL; // doesn't free anything! we just lost our access

// to the memory block most recently allocated, so
// we've created a hopeless memory leak!

A dangling pointer is a pointer that refers to a invalid block of memory, either to an undefined memory
address or to a memory block that has already been freeed, and should thus be considered inaccessible. For
example:

int *p = malloc(sizeof(int));
*p = 42;
int *q = p; // q is a pointer; now it just holds the same address as p
printf("q is %d\n", *q); // 42
printf("p is %d\n", *p); // 42
free(p); // free p.
printf("p is %d\n", *p); // NO! p is invalid because we just free'd it!
printf("q is %d\n", *q); // Double NO! since we free'd p, q is a "dangling pointer"

// since it pointed to the same memory block!

scan-build and valgrind

Valgrind is a pretty excellent tool for helping to ferret out memory leaks, memory trashing, and any other
type of memory corruption error that can happen in C programs. To run a program with valgrind, you
can just type valgrind <program>.

There are many command-line options to change the behavior or output of valgrind. Type valgrind -h
for help (or man valgrind). See http://valgrind.org for more information on this great tool.

Besides valgrind, the scan-build tool is also incredibly helpful. It is also usually faster and with better
(easier to understand) output. See a previous description of scan-build as well as https://clang-analyzer.llvm.
org/scan-build.html for more information.

3 Just search for "Firefox memory leak" and you'll find plenty of posts not unlike the following: https://support.mozilla.org/en-US/
questions/1006397

8.3. Dynamic memory allocation 65

http://valgrind.org
https://clang-analyzer.llvm.org/scan-build.html
https://clang-analyzer.llvm.org/scan-build.html
https://support.mozilla.org/en-US/questions/1006397
https://support.mozilla.org/en-US/questions/1006397


The Book of C, Release 2022.08

8.3.3 Advantages and disadvantages of heap-allocated memory

Heap-allocated memory makes it possible to create linked lists, dynamically-sized arrays and strings, and
more exotic data structures such as trees, heaps, and hashtables. Manually allocating and deallocating
memory can be a pain, though. As a result, you probably want to be strategic about whether to use stack-
allocated memory (e.g., local arrays and variables) or heap-allocated memory in a program. Here are some
key advantages and disadvantages to help you consider what is right for a given situation:

Advantages to heap allocation

• The size of an array, string, or some other data structure can be defined at run time. With stack-
allocated arrays, for example, you typically need to specify a "reasonable upper bound" for the size of
the array, and somehow deal with the consequences if the size of the array is exceeded.

• A block of memory will exist until it is explicitly deallocated with a call to free. For stack-allocated
memory, the memory is automatically deallocated when a function is exited, which is totally inappro-
priate for data structures such as linked lists.

• You can dynamically change the size of the array, string, or some other data structure at run time.
There is a built-in realloc function that can help with this (see man realloc),

Disadvantages to heap allocation

• You have to remember to allocate and deallocate a data structure, and you have to get it right. This is
harder than it sounds, and when things go wrong the program will either exhibit unexpected (buggy)
behavior, or crash in a ball of flames. Debugging can be hard.

• You have to remember to deallocate a memory block exactly once when you are done with it, and you
have to get that right. Also, harder than it looks. For example, calling free on the same memory block
twice is an error, and typically causes a crash.

8.3.4 Dynamic Arrays

Since arrays are just contiguous areas of bytes, you can allocate your own arrays in the heap using malloc.
It is also fairly straightforward to resize an array as necessary (i.e., to grow it to accommodate more data
items). The following code allocates two arrays of 1000 ints --- one in the stack the usual "local" way, and
one in the heap using malloc. Other than the different allocations, the two are syntactically similar in use.

int a[1000]; // allocate 1000 ints in the stack
int *b = malloc(sizeof(int) * 1000); // allocate 1000 ints on the heap
a[123] = 13; // just use good ol' [] to access elements
b[123] = 13; // in both arrays
free(b); // must call free on the heap-allocated array

To grow the heap-allocated array, we could do something like the following. (Note that the following code
uses memcpy, which accepts three parameters: a destination address, a source address, and the number of
bytes to copy):

int *arr = malloc(sizeof(int) * 1000); // 1000 ints on the heap

// assume we need to grow the array

int *newarr = malloc(sizeof(int) * 2000); // double your integer pleasure
(continues on next page)

66 Chapter 8. Pointers and more arrays



The Book of C, Release 2022.08

(continued from previous page)

memcpy(newarr, arr, 1000*sizeof(int)); // copy over contents of old array
free(arr); // free old array
arr = newarr; // arr now points to new, larger block

8.3.5 C strings revisited

Although we have used arrays of char to hold C strings thus far, a much more common way to declare the
type of a C string is char *. This shouldn't be particularly surprising, since arrays and pointers are treated
nearly synonymously in C. That's not to say that stack-allocated C strings as arrays aren't useful. Indeed,
they are very commonly used. It is, however, often necessary to copy and manipulate strings in memory,
and using stack or statically allocated arrays becomes quite difficult.

As an example, say that we need to "escape" an HTML string to replace any occurrence of < with &lt;
(lt: "less-than") and any occurrence of > with &gt; (gt: "greater-than"). (There are other characters that
are replaced when "properly" escaping an HTML string; we're just focusing on these two characters in this
example.) Since the string will "grow" as we escape it, dynamic memory allocation has obvious benefits.
Here is the code:

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <string.h>
4

5 int count_escapees(const char *htmltext) {
6 int count = 0;
7 for (int i = 0; i < strlen(htmltext); i++) {
8 if (htmltext[i] == '<' || htmltext[i] == '>') {
9 count += 1;

10 }
11 }
12 return count;
13 }
14

15 void doescape(const char *htmltext, char *expandedtext) {
16 int j = 0;
17 for (int i = 0; i < strlen(htmltext); i++) {
18 if (htmltext[i] == '<') {
19 strcpy(&expandedtext[j], "&lt;");
20 j += 4;
21 } else if (htmltext[i] == '>') {
22 strcpy(&expandedtext[j], "&gt;");
23 j += 4;
24 } else {
25 expandedtext[j] = htmltext[i];
26 j += 1;
27 }
28 }
29 }
30

31 char *escapehtml(const char *htmltext) {
32 int count = count_escapees(htmltext);
33 int origlen = strlen(htmltext);

(continues on next page)

8.3. Dynamic memory allocation 67



The Book of C, Release 2022.08

(continued from previous page)

34 int expandedlen = origlen + count * 4 + 1;
35 char *expandedtext = malloc(sizeof(char) * expandedlen);
36 doescape(htmltext, expandedtext);
37 return expandedtext;
38 }
39

40 int main() {
41 const char *orig = "<a href=\"badurl\">a link!</a>";
42 char *escaped = escapehtml(orig);
43 printf("Original: %s\n", orig);
44 printf("Escaped: %s\n", escaped);
45 free(escaped);
46 return EXIT_SUCCESS;
47 }

8.3.6 Linked lists

One of the most commonly used dynamic data structures is the linked list. A standard definition of a linked
list node in C, in which each node contains an integer, is as follows:

struct node {
int value;
struct node* next;

};

Notice that there's something of a circular definition and usage here (i.e., inside the definition of struct
node, we declare a struct node as a field). C is perfectly happy with that circularity.

Manipulating nodes in a linked list generally involves allocating new nodes on the heap, linking in new
nodes to the list, and/or modifying node pointers in other ways. Here is a bit of code for adding a new node
to a list by inserting in the front:

struct node *insert(struct node *head, int new_value) {

struct node *new_node = malloc(sizeof(struct node));
new_node->value = new_value;
new_node->next = head; // next ptr of new node refers to head of old list
return new_node;

}

A function to traverse a list and print each value out might look like the following. Notice that since the
print_list function gets a copy of the head of the list, it is safe to modify that pointer within the print_list
function.

void print_list(struct node *head) {
int i = 0;
while (head != NULL) {

printf ("Node %d has the value %d\n", i+1, head->value);
head = head->next; // advance the list pointer
i += 1;

}
}

68 Chapter 8. Pointers and more arrays



The Book of C, Release 2022.08

8.3.7 Pointers to pointers, etc.

Some functions in the C standard library take pointers-to-pointers ("double pointers"), and you will likely
encounter situations in which it is useful to make pointers-to-pointers. One example of such a situation
occurs when a function needs to allocate and initialize heap memory for a caller. Here is an example in
code:

int copy_string(char **dest, const char *source) {
int buffer_size = strlen(source) + 1;
*dest = malloc(sizeof(char) * buffer_size);
if (!*dest) {

return -1; // failure!
}
strlcpy(*dest, source, buffer_size);
return 0; // success

}

char *ptr;
copy_string(&ptr, "here's a string!");
printf("%s\n", ptr);
// don't forget: need to eventually free(ptr)!

In the above code, the copy_string function takes a "pointer to a pointer to a char" as the first parameter,
and a constant C string as the second parameter. The function allocates a new block of memory using
malloc and copies the source string into a dest string.

Why can't the first parameter be char *? The reason has to do with pass-by-value function parameters:
since we want to modify what dest points to, we need to access that pointer indirectly or the modification
only happens to a local variable. (This is exactly the same situation we encountered with the failed swap
function.) Since we can indirectly access the dest pointer (i.e., via the pointer to the pointer), the change we
make is observable to the caller of the function.

Outside the function, we declare a normal char * string variable (ptr), then pass the address of ptr to the
function, which creates the pointer-to-a-pointer. When we return from the function, ptr has been modified
(specifically, the address held in the variable ptr has been modified). As a side-effect of the way this function
is implemented (i.e., it uses malloc), we must remember to eventually call free on ptr in order to avoid a
memory leak.

Exercises

1. Consider the following code. Identify exactly what is allocated on the stack and what is allocated on
the heap:

int main() {
int *p = NULL;
p = malloc(sizeof(int)*42);
char arr[1000];
char *p = &arr[10];
char *q = malloc(64);
char *r = &q[10];

}

2. Write a function that mimics the built-in strdup function.

8.3. Dynamic memory allocation 69



The Book of C, Release 2022.08

3. Write a clear_list function that takes a pointer to a linked list (struct node *) and calls free for
each element in the list (i.e., to completely deallocate the list).

4. Create a clone_list function that takes a pointer to a linked list (struct node *) and returns a
completely cloned copy of the list (i.e., there are exactly the same number of nodes in the new list,
with the exactly the same values in the same order, but the old list is left totally unmodified).

5. Create a reverse_list function that accepts a pointer to a struct node and returns a pointer to the
list with all elements now in reversed order.

6. Write a function that appends a new value to the end of a linked list. The function should return a
pointer to the head of the list.

7. Write new implementations of the various linked list functions we've seen and written so far but
instead of having an int as the value, use a char * (dynamically allocated C string).

8. Write a function that accepts the name of a text file, and allocates and returns a C string that contains
the entire contents of the file. (If you're familiar with the basic file I/O API of Python, this function
should work like the read() method of a file object.)

9. Rewrite the escapehtml function so that it accepts a pointer to a pointer to a char (char **), allocates
a new string that contains the escaped string and assigns the newly allocated string to the C string
pointer to by the pointer argument to the function. For example, if the parameter is char **str,
the variable *str refers to the C string containing the HTML text to be escaped. When the function
concludes, *str should now refer to the C string containing the escaped HTML text. You should be
sure to free the original unescaped C string.

10. Rewrite the escapehtml function so that it accepts a pointer to a char (not a const pointer), and modifies
the string in place to escape each < and >. You should use the built-in C library function realloc to
dynamically reallocate heap memory allocated to the string passed into the function. You'll need to
read the man page for realloc to understand how this function works.

11. Create a couple C structs to implement a dynamically growable/shrinkable stack data structure (a
stack of integers) like the following:

struct intnode {
int value;
struct intnode *next;

};

typedef struct {
struct intnode *top;

} stack_t;

Write five functions to create, destroy/deallocate, and perform standard operations on a stack with
these definitions. Notice that the stack_t structure just contains a pointer to the top of the stack,
and that stack is just implemented as a linked list of struct intnode. For the pop function, you can
assume in your implementation that the stack is non-empty (i.e., it would be an error on the part of
the user of the stack if pop was called on an empty stack).

• stack_t* allocate_stack(void);

• void deallocate_stack(stack_t *);

• int empty(stack_t *);

• int pop(stack_t *);

• void push(stack_t *, int);

70 Chapter 8. Pointers and more arrays



CHAPTER

NINE

PROGRAM STRUCTURE AND COMPILATION

9.1 The compilation process

For a C program of any reasonable size, it is convenient to separate the functions that comprise the program
into different text files. There are standard ways to organize source code in order to allow the functions in
separate files to cooperate, and yet allow the compiler to build a single executable.

The process of compiling C programs is different than with Java, and has important implications for how
source code must be organized within files. In particular, C compilers make a single (top-to-bottom) pass
over source code files. This process is very much unlike the Java compiler, which may make multiple passes
over the same file, and which may automatically compile multiple files in order to resolve code dependencies
(e.g., if a class is used in one file but defined in another, the compiler will compile both files). In C, it is
entirely up to the programmer to decide which files need to be compiled and linked to produce an executable
program.

There are three basic steps involved in compiling a C program: preprocessing, compilation of C source code to
machine code (or assembly) (also called object code), and linking of multiple object files into a single binary
executable program. Each of these steps are described below.

hello.c
source code

hello.o hello
"object" code

binary executable

hello.s
assembly code

clang -c hello.c clang -o hello hello.o

clang -S hello.c

any additional libraries
get "linked" in here, e.g.,

clang -o hello hello.o -lmath

compiler linkerpreprocessor

clang -E hello.c

hello.c
preprocessed code

Fig. 1: The three basic steps when compiling C programs are preprocessing, compilation, and linking.

71



The Book of C, Release 2022.08

9.1.1 The preprocessing step

The preprocessing step happens just prior to the compilation phase. The C preprocessor looks for any
preprocessor directives in the source code, which are any lines starting with #. The preprocessor then performs
some actions specified by the directive. The text resulting from the preprocessor's action is then fed directly
(and automatically) to the compilation phase.

Since a C compiler makes a single pass over a .c file, it must be made aware of all the types and signatures
in order to correctly and successfully complete the compilation process. That is, if an unknown data type is
encountered in the single top-to-bottom pass, the compiler will report an error. For example, here is some
source code that will not compile correctly:

#include <stdlib.h>

int main() {
struct function f1 = { 1,2};
return EXIT_SUCCESS;

}

struct function {
int numerator;
int denominator;

};

Why does it fail? Simply because the definition of struct function comes after its first use. To make the
code correctly compile, the struct definition must precede main.

Header (.h) and source (.c) files

Because of the single-pass top-to-bottom operation of C compilers, each source file (each .c file) must
identify all data types and function signatures that are used in that file in order to make the code successfully
compile. The standard practice in C is to define any types and declare any functions in header files (.h files)
in order to facilitate the compilation process. In one sense, you can think of the .h files as containing the
"external interfaces" (i.e., the API) and data types used for a set of functions, and the corresponding .c file
as containing the actual function definitions.

For example, say that we want to define the struct fraction type and a couple utility functions that can
be used in other .c files. We might define a fraction.h file that contains the following:

struct fraction {
int numerator;
int denominator;

};

void print_fraction(const struct fraction *);
void invert_fraction(struct fraction *);

Notice that this header file contains the struct definition, and two function prototypes. A "prototype" for a
function gives its name and arguments but not its body. The function parameters do not even have to have
variable names (as they're shown above), but there's no problem if they do include the parameter names.

The corresponding fraction.c file might contain the following:

72 Chapter 9. Program structure and compilation



The Book of C, Release 2022.08

#include "fraction.h"

void print_fraction(const struct fraction *f) {
printf("Fraction: %d/%d\n", f->numerator, f->denominator);

}

void invert_fraction(struct fraction *f) {
int tmp = f->numerator;
f->numerator = f->denominator;
f->denominator = tmp;

}

Notice that the first line of code in fraction.c is #include "fraction.h". Any line of code that begins # is
called a preprocessor directive. We have used #include quite a bit so far. Its meaning is simply to directly
replace the #include directive with the text in the specified file name.

A file that uses the fraction utility functions in a file called test.c might look like the following:

#include "fraction.h" // include struct fraction definition and
// fraction utility function prototypes,
// as well as other headers like stdlib.h

int main() {
struct fraction f = {2,3};
invert_fraction(&f);
print_fraction(&f);
return EXIT_SUCCESS;

}

Preprocessor directives

There are several preprocessor directives that can be listed in C source code. #include and #define are the
two most common, but there are others.

#include

As we've already seen, the #include directive reads in text from different files during the preprocessing
step. #include is a very unintelligent directive --- the action is simply to paste in the text from the given
file. The file name given to #include may be included in angle brackets or quotes. The difference is that
system files should be enclosed in angle brackets and any user files should be enclosed in quotes.

#define

The #define directive can be used to set up symbolic replacements in the source. As with all preprocessor
operations, #define is extremely unintelligent --- it just does textual replacement without any code evalua-
tion. #define statements are used as a crude way of establishing symbolic constants or macros. Generally
speaking, you should prefer to use const values over #define directives.

Here are examples of quasi-constant definitions:

#define MAX 100
#define SEVEN_WORDS that_symbol_expands_to_all_these_words

9.1. The compilation process 73



The Book of C, Release 2022.08

Later code can use the symbols MAX or SEVEN_WORDS which will be replaced by the text to the right of each
symbol in its #define.

Simplistic macro functions can also be defined with #define directives. For example, a commonly used
macro is MAX, which takes two parameters and can be used to determine the larger of two values:

#define MAX(a,b) (a > b ? a : b)

Again, the #define directive is incredibly unintelligent: it is simply smart enough to do textual replacement.
For example, the following code:

int a = MAX(c, d);

would be replaced by the preprocessor with the following:

int a = (c > d ? c : d);

While MAX is often referred to as a macro function (or simply macro), it does not operate as a function at all.
The programmer can (somewhat) treat the macro as a function, but the effect is just an illusion created by
the C preprocessor.

#if

At the preprocessing phase, the symbolic names (and values) defined by #define statements and predefined
by the compiler can be tested and evaluated using #if directives. The #if test can be used at the prepro-
cessing phase to determine whether code is included or excluded in what is passed on to the compilation
phase. The following example depends on the value of the FOO #define symbol. If it is true (i.e., non-zero),
then the "aaa" lines (whatever they are) are compiled, and the "bbb" lines are ignored. If FOO is false (i.e.,
0), then the reverse is true.

#define FOO 1

...

#if FOO
aaa
aaa

#else
bbb
bbb

#endif

Interestingly (and usefully), you can use #if 0 ...#endif to effectively comment out areas of code you
don't want to compile, but which you want to keep in the source file.

74 Chapter 9. Program structure and compilation



The Book of C, Release 2022.08

Multiple #includes

It is invalid in C to declare the same variable or struct twice. This can easily happen if a header file is
#included twice. For example, if a source code file includes header file A and B, and header file B also
includes header file A, the contents of header file A will be included twice, which may cause problems.

A standard practice to avoid this problem is to use the #ifndef directive, which means "if the following
symbol is not defined, do the following". The #define symbol is often based on the header file name (as in
the following), and this practice

This largely solves multiple #include problems.

#ifndef __FOO_H__
#define __FOO_H__ // we only get here if the symbol __FOO_H__ has not been previously␣
↪→defined

<rest of foo.h ...>

#endif // __FOO_H__

static functions

There is yet another meaning to the keyword static in the context of global variables and functions.
Specifically:

1. A function may be declared static, in which case it can only be used in the same file, below the
point of its declaration. The meaning of static in this case is essentially that the function is "private"
to the file. That is, it can only be used by other functions within the same file, but not from within
another .c file.

2. The static keyword can also be used with global variables in a .c file (i.e., variables defined outside
any function). The meaning in this case is the same with static functions: the variable is "private"
to the .c file and cannot be accessed or used from other .c files.

For example, here are definitions of a static (private) variable and static (private) function within a .c
source file:

// this variable is not "visible" to any functions in some other .c file
static int private_counter = 0;

// this function is not "visible" to any functions in some other .c file
static void add_to_counter(int increment) {

// ok to use the private/static variable from this function,
// since it is in the same file
private_counter += increment;

}

9.1. The compilation process 75



The Book of C, Release 2022.08

Invoking the preprocessor

Normally, you do not need to do anything special to invoke the preprocessing phase when compiling a
program. It is, however, possible to only invoke the preprocessing phase (i.e., no compilation or anything
else), and also to define new preprocessor symbols on the command line.

To invoke just the preprocessor in clang, you can use the command clang -E sourcefile.c. clang has
another command line option to just run the preprocessor and check code syntax: clang -fsyntax-only
sourcefile.c.

To define new preprocessor symbols (i.e., just like #define), the -D option can be used with clang, as in
clang -DSYMBOL, or clang -DSYMBOL=VALUE.

9.1.2 The compilation step

The compilation step takes as input the result from the preprocessing stage. Thus, any # directives have
been processed and are removed in the source code seen by the compiler.

The compilation stage can produce either assembly code or an object file as output. Typically, the object code
is all that is desired; it contains the binary machine code that is generated from compiling the C source.
There are a few different relevant compiler options at this stage:

clang -S sourcefile.c
Produces assembly code in sourcefile.s

clang -c sourcefile.c
Produce object file (binary machine code) in sourcefile. This is the more common option to employ
for the compilation stage. When all source files have been compiled to object code (.o files), all the .o
files can be linked to produce a binary executable program.

Some additional compiler options that are useful at this stage:

option meaning

-g include information to facilitate debugging using a program like gdb.
-Wall Warn about any potentially problematic constructs in the code.

9.1.3 The linking phase

The linking stage takes 1 or more object files and produces a binary executable program (i.e., a program
that can be directly executed on the processor). It requires two things: that the implementations for any
functions referenced in any part of the code have been defined, and that there is exactly one main function
defined.

Options for linking

In the simplest case, there is only one source file to preprocess, compile, and link. In that case, the same
command line we've used with clang so far does the trick:

clang -g -Wall inputfile.c -o myprogram

or, if you've already compiled inputfile.c to inputfile.o, just:

76 Chapter 9. Program structure and compilation



The Book of C, Release 2022.08

clang -g -Wall inputfile.o -o myprogram

In a more "interesting" case, there is more than one file to compile and link together. For each source file,
you must compile it to object code. Following that, you can link all the object files together to produce the
executable:

clang -g -Wall file1.c -c
clang -g -Wall file2.c -c
clang -g -Wall file3.c -c
clang -g file1.o file2.o file3.o -o myprogram

If you use functions from the standard C library, you don't need to do anything special to link in the code
that implements the functions in that library. If, however, your program uses a function from an external
library like the math library (see man 3 math; it contains functions such as log2, sqrt, fmod, ceil, and
floor), the library to be linked with must be specified on the command line. The basic command is:

clang -g -Wall inputfile.o -o outputfile -lmath

The -l option indicates that some external library must be linked to the program, in this case the math
library.

The main function

The execution of a C program begins with the function named main. All of the files and libraries for the
C program are compiled together to build a single program file. That file must contain exactly one main
function which the operating system uses as the starting point for the program. main returns an int which,
by convention, is 0 if the program completed successfully and non-zero if the program exited due to some
error condition. This is just a convention which makes sense in shell oriented environments such as UNIX.

Command-line arguments to a program

For many C programs, it is useful to be able to pass various command-line arguments to the program
through the shell. For example, if we had a program named myprogram and we wanted to give it the names
of several text files for it to process, we might use the following command line:

$ ./myprogram file1.txt file2.txt file3.txt

Each of the file names (file1-3.txt) is a command-line parameter to the program, and can be collected through
two parameters to main which are classically called argc and argv and are declared as follows:

int main(int argc, char *argv[]) {
// ...

}

The meaning of these parameters is:

argc
The number of command-line arguments given to the program, including the program name

argv
An array of C strings which refer to each of the command-line parameters. Note that argv[0] is
always the name of the program itself. For example, in the above command line, argv[0] would be
"./myprogram".

9.1. The compilation process 77



The Book of C, Release 2022.08

A simple program that traverses the array of command-line arguments and prints each one out could be
written as follows:

#include <stdio.h>
#include <stdlib.h>

int main(int argc, char *argv[]) {
for (int i = 0; i < argc; i++) {

printf("argument %d is %s\n", i, argv[i]);
}
return EXIT_SUCCESS;

}

There is a C library function called getopt that enables parsing of options in more flexible ways. See man 3
getopt for more information.

9.2 Invariant testing and assert

Array out of bounds references are an extremely common form of C run-time error. You can use the
assert() function to sprinkle your code with your own bounds checks. A few seconds putting in assert
statements can save you hours of debugging.

Getting out all the bugs is the hardest and scariest part of writing a large piece of software. Adding assert
statements are one of the easiest and most effective helpers for that difficult phase.

#include <assert.h>
#define MAX_INTS 100

void somefunction() {
// ...

int ints[MAX_INTS];
i = foo(<something complicated>);
// i should be in bounds,
// but is it really?
assert(i>=0); // safety assertions
assert(i<MAX_INTS);
ints[i] = 0;

// ...

Depending on the options specified at compile time, the assert() expressions will be left in the code for
testing, or may be ignored. For that reason, it is important to only put expressions in assert() tests which
do not need to be evaluated for the proper functioning of the program.

int errCode = foo(); // yes --- ok
assert(errCode == 0);
if (assertfoo() == 0) ... // NO, foo() will not be called if

// the compiler removes the assert()

78 Chapter 9. Program structure and compilation



CHAPTER

TEN

C STANDARD LIBRARY FUNCTIONS

10.1 Precedence and Associativity

Order Operation Associativity

1.
function-call(), [] -> . L to R

2.
! ~ ++ -- + - *``(ptr
deref) ``sizeof & (addr
of) (all unary operations are the
same precedence)

R to L

3.
* / % (the top tier arithmetic bi-
nary ops)

L to R

4.
+ - (second tier arithmetic bi-
nary ops)

L to R

5.
< <= > >= == != L to R

6.
in order: & ^ | && || (bitwise
before Boolean)

L to R

7.
= and all its variants R to L

8.
, (comma) L to R

One common pitfall with the above precedence fields is that:

*structptr.field

never works. The field selection operator (.) has higher precedence than the dereference operator (*), thus
the expression is evaluated as *(structptr.field) instead of the (usually) desired (*structptr).field.
A way to avoid this problem altogether is to write structptr->field.

79



The Book of C, Release 2022.08

10.2 Standard Library Functions

Many basic housekeeping funcions are available to a C program in form of standard library functions. To
call these, a program must #include the appropriate header file. All modern compilers link in the standard
library code by default, so all that is needed is to include the correct header file. The functions listed in the
next table are the most commonly used ones, but there are many more which are not listed here.

header file types of functions available

stdio.h file input and output, e.g., printf
ctype.h character tests, e.g., isspace
string.h string operations
stdlib.h utility functions, e.g., atoi, rand, abs
math.h mathematical functions, e.g., sin, pow
assert.h the assert debugging macro
stdarg.h support to create functions that take a variable number of parameters
signal.h support for exceptional condition signals
time.h date and time, e.g., time
sys/time.h other date/time functions, e.g., gettimeofday
limits.h constants which define type range values such
float.h as INT_MAX, FLOAT_MAX
stdbool.h bool type (requires -std=c99 compiler flag)

10.3 stdio.h

stdio.h is a very common file to include. It includes functions to print and read strings from
files and to open and close files in the file system.

FILE* fopen(const char* fname, const char* mode);
Open a file named in the filesystem and return a FILE* for it. Mode = "r" read, "w" write, "a" append,
returns NULL on error. The standard files stdout, stdin, stderr are automatically opened and closed
for you by the system.

int fclose(FILE* file);
Close a previously opened file. Returns EOF on error. The operating system closes all of a program's
files when it exits, but it's tidy to do it beforehand. Also, there is typically a limit to the number of files
which a program may have open simultaneously.

int fgetc(FILE* in);
Read and return the next unsigned char out of a file, or EOF if the file has been exhausted. (detail)
This and other file functions return ints instead of a chars because the EOF constant they potentially
is not a char, but is an int. getc() is an alternate, faster version implemented as a macro which may
evaluate the FILE* expression more than once.

char* fgets(char* dest, int n, FILE* in)
Reads the next line of text into a string supplied by the caller. Reads at most n-1 characters from the
file, stopping at the first 'n' character. In any case, the string is '0' terminated. The 'n' is included in the
string. Returns NULL on EOF or error. There's also a gets function, but you should never use it! (read
the man page for why).

int fputc(int ch, FILE* out);
Write the char to the file as an unsigned char. Returns ch, or EOF on err. putc() is an alternate, faster
version implemented as a macro which may evaluate the FILE* expression more than once.

80 Chapter 10. C Standard Library Functions



The Book of C, Release 2022.08

int ungetc(int ch, FILE* in);
Push the most recent fgetc() char back onto the file. EOF may not be pushed back. Returns ch or EOF
on error.

int printf(const char* format_string, ...);
Prints a string with values possibly inserted into it to standard output. Takes a variable number of
arguments -- first a format string followed by a number of matching arguments. The format string
contains text mixed with % directives which mark things to be inserted in the output. %d = int,
%Ld=long int, %s=string, %f=double, %c=char. Every % directive must have a matching argument
of the correct type after the format string. Returns the number of characters written, or negative on
error. If the percent directives do not match the number and type of arguments, printf() tends to crash
or otherwise do the wrong thing at run time. fprintf() is a variant which takes an additional FILE*
argument which specifies the file to print to. Examples:

printf("hello\n");
// prints: hello

printf("hello %d there %d\n", 13, 1+1);
// prints: hello 13 there 2

printf("hello %c there %d %s\n", 'A', 42, "ok");
// prints: hello A there 42 ok

int scanf(const char* format, ...)
Opposite of printf() -- reads characters from standard input trying to match elements in the format
string. Each percent directive in the format string must have a matching pointer in the argument list
which scanf() uses to store the values it finds. scanf() skips whitespace as it tries to read in each percent
directive. Returns the number of percent directives processed successfully, or EOF on error. scanf()
is famously sensitive to programmer errors. If scanf() is called with anything but the correct pointers
after the format string, it tends to crash or otherwise do the wrong thing at run time. sscanf() is a
variant which takes an additional initial string from which it does its reading. fscanf() is a variant
which takes an additional initial FILE* from which it does its reading. Example:

{
int num;
char s1[1000];
char s2[1000];
scanf("hello %d %s %s", &num, s1, s2);

}

The above code looks for the word "hello" followed by a number and two words (all separated by whites-
pace). scanf() uses the pointers &num, s1, and s2 to store what it finds into the local variables.

int snprintf(char* buffer, size_t size, const char *format, ...)
A version of printf that fills a char buffer with the resulting formatted string. The first two arguments
of snprintf are the buffer to file and the size of the buffer. The remaining arguments are exactly like
printf: a format string followed by any arguments to be formatted in the resulting string. There
is also a sprintf function, but it is not "safe" since it does not include the buffer size in the set of
parameters, which makes buffer overflows1 easily possible.

int fprintf(FILE *stream, const char *format, ...)
A version of printf that causes output to be sent to a file instead of to the default standard output.
printf works exactly like fprintf(stdout, ...) since stdout is predefined in stdio.h as a FILE *
that results in console output.

1 http://en.wikipedia.org/wiki/Buffer_overflow

10.3. stdio.h 81

http://en.wikipedia.org/wiki/Buffer_overflow


The Book of C, Release 2022.08

10.4 ctype.h

ctype.h includes macros for doing simple tests and operations on characters

isalpha(ch)
Check whether ch is an upper or lower case letter

islower(ch), isupper(ch)
Same as above, but upper/lower specific

isspace(ch)
Check whether ch is a whitepace character such as tab, space, newline, etc.

isdigit(ch)
Check whether ch is a digit such as '0'..'9'

toupper(ch), tolower(ch)
Return the lower or upper case version of a alphabetic character, otherwise pass it through unchanged.

10.5 string.h

None of these string routines allocate memory or check that the passed in memory is the right size. The
caller is responsible for making sure there is "enough" memory for the operation. The type size_t is an
unsigned integer wide enough for the computer's address space (most likely an unsigned long).

size_t strlen(const char* string);
Return the number of chars in a C string. EG strlen("abc")==3

char* strcpy(char* dest, const char* source);
Copy the characters from the source string to the destination string.

size_t strlcpy(char* dest, const char* source, size_t dest_size);
Like strcpy(), but knows the size of the dest. Truncates if necessary. Use this to avoid memory errors
and buffer-overflow security problems. This function is not as standard as strcpy(), but most sytems
have it. Do not use the old strncpy() function -- it is difficult to use correctly.

char *strlcat(char* dest, const char* source, size_t dest_size);
Append the characters from the source string to the end of destination string.

int strcmp(const char* a, const char* b);
Compare two strings and return an int which encodes their ordering. zero:a==b, negative:a<b,
positive:a>b. It is a common error to think of the result of strcmp() as being boolean true if the strings
are equal which is, unfortunately, exactly backwards.

int strncmp(const char *a, const char *b, size_t n);
Just like strcmp, except only the minimum of the lengths of a and b, and the value n characters are
compared. There's also strncasecmp and strcasecmp which compare strings in a case-insensitive
manner.

char* strchr(const char* searchIn, char ch);
Search the given string for the first occurence of the given character. Returns a pointer to the character,
or NULL if none is found.

char* strstr(const char* searchIn, const char* searchFor);
Similar to strchr(), but searches for an entire string instead of a single character. The search is case
sensitive.

82 Chapter 10. C Standard Library Functions



The Book of C, Release 2022.08

void* memcpy(void* dest, const void* source, size_t n);
Copy the given number of bytes from the source to the destination. The source and destination must
not overlap. This may be implemented in a specialized but highly optimized way for a particular
computer.

void* memmove(void* dest, const void* source, size_t n);
Similar to memcpy() but allows the areas to overlap. This probably runs slightly slower than memcpy().

10.6 stdlib.h

int rand();
Returns a pseudo random integer in the range 0..RAND_MAX (limits.h) which is at least 32767.

void srand(unsigned int seed);
The sequence of random numbers returned by rand() is initially controlled by a global "seed" variable.
srand() sets this seed which, by default, starts with the value 1. Pass the expression time(NULL)
(time.h) to set the seed to a value based on the current time to ensure that the random sequence is
different from one run to the next.

int abs(int i);
Return the absolute value of i.

void* malloc(size_t size);
Allocate a heap block of the given size in bytes. Returns a pointer to the block or NULL on failure. A
cast may be required to store the void* pointer into a regular typed pointer. There is also a realloc
function which can change the size of a heap-allocated block of memory. See the man page for details.

void free(void* block);
Opposite of malloc(). Returns a previous malloc block to the system for reuse

void exit(int status);
Halt and exit the program and pass a condition int back to the operating sytem. Pass 0 to signal
normal program termination, non-zero otherwise.

void* bsearch(const void* key, const void* base, size_t len, size_t elem_size,
<compare_function>);

Do a binary search in an array of elements. The last argument is a function which takes pointers to
the two elements to compare. Its prototype should be: int compare(const void* a, const void*
b);, and it should return 0, -1, or 1 as strcmp() does. Returns a pointer to a found element, or NULL
otherwise. Note that strcmp() itself cannot be used directly as a compare function for bsearch() on an
array of char* strings because strcmp() takes char* arguments and bsearch() will need a comparator
that takes pointers to the array elements -- char**.

void qsort(void* base, size_t len, size_t elem_size, <compare_function>);
Sort an array of elements. Takes a function pointer just like bsearch().

int atoi(const char *s)
Return an integer parsed from the string s. This function is somewhat problematic since it cannot
return errors if the string does not contain a parseable integer. You should generally use strtol (and
related functions) which can return errors. See the man page on strtol for more.

double atof(const char *)
Return a floating point number in double format parsed from the string s. Like atoi this function is
somewhat problematic since it cannot return errors if the string does not contain a parseable floating
point number. You should generally use strtod (and related functions) instead.

10.6. stdlib.h 83



The Book of C, Release 2022.08

84 Chapter 10. C Standard Library Functions



CHAPTER

ELEVEN

THANKS

Thanks to my COSC 301 students from Fall 2015 and 2016 for test-driving this text and for providing useful
feedback. Thanks also to Aaron Gember-Jacobson, Chris Nevison, and Yasoob Khalid for pointing out
various typos (and in Yasoob's case, the pull requests).

If you find any errors or typos in the book, or wish to make a suggestion for improvement, please file a bug
report and/or make a pull request at https://github.com/jsommers/cbook/issues.

85

https://github.com/jsommers/cbook/issues


The Book of C, Release 2022.08

86 Chapter 11. Thanks



CHAPTER

TWELVE

COPYRIGHT

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International
License: http://creativecommons.org/licenses/by-nc-sa/4.0/

87

http://creativecommons.org/licenses/by-nc-sa/4.0/


The Book of C, Release 2022.08

88 Chapter 12. Copyright



CHAPTER

THIRTEEN

INDICES AND TABLES

• genindex

• modindex

• search

89



The Book of C, Release 2022.08

90 Chapter 13. Indices and tables



BIBLIOGRAPHY

[KR] B. Kernighan and D. Ritchie. The C Programming Language, 2nd ed.. Prentice-Hall, 1988. https:
//en.wikipedia.org/wiki/The_C_Programming_Language

[CPP] S. Prata. C Primer Plus (6th ed.). S. Prata. SAMS Publishing (2014).

[C99] The home of C standards documents can be found here: http://www.open-std.org/jtc1/sc22/
wg14/www/projects#9899. Specific new features in C99 are detailed (http://www.open-std.org/
jtc1/sc22/wg14/www/newinc9x.htm), and the full language standard is also available (http://
www.open-std.org/jtc1/sc22/wg14/www/docs/n1256.pdf). Although there is an even more recent
standard (C11), we largely focus on C99 (and earlier) features in this text.

[Evolution] D. Ritchie. The Evolution of the Unix Time-sharing System, AT&T Bell Laboratories Technical
Journal 63 No. 6 Part 2, October 1984, pp. 1577-93. Available at: http://cm.bell-labs.co/who/
dmr/hist.pdf

[Regehr] J. Regehr. A Guide to Undefined Behavior in C and C++, Part 1. https://blog.regehr.org/
archives/213

[Lattner] C. Lattner. What Every C Programmer Should Know About Undefined Behavior #1/3. http:
//blog.llvm.org/2011/05/what-every-c-programmer-should-know.html

[Horrific] http://thedailywtf.com/articles/One-Bad-Ternary-Operator-Deserves-Another

[Goto] E. W. Dijkstra. Letters to the editor: go to statement considered harmful. Communications of
the ACM, Volume 11, Issue 3, March 1968. https://dl.acm.org/citation.cfm?id=362947

91

https://en.wikipedia.org/wiki/The_C_Programming_Language
https://en.wikipedia.org/wiki/The_C_Programming_Language
http://www.open-std.org/jtc1/sc22/wg14/www/projects#9899
http://www.open-std.org/jtc1/sc22/wg14/www/projects#9899
http://www.open-std.org/jtc1/sc22/wg14/www/newinc9x.htm
http://www.open-std.org/jtc1/sc22/wg14/www/newinc9x.htm
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1256.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1256.pdf
http://cm.bell-labs.co/who/dmr/hist.pdf
http://cm.bell-labs.co/who/dmr/hist.pdf
https://blog.regehr.org/archives/213
https://blog.regehr.org/archives/213
http://blog.llvm.org/2011/05/what-every-c-programmer-should-know.html
http://blog.llvm.org/2011/05/what-every-c-programmer-should-know.html
http://thedailywtf.com/articles/One-Bad-Ternary-Operator-Deserves-Another
https://dl.acm.org/citation.cfm?id=362947


The Book of C, Release 2022.08

92 Bibliography



INDEX

Symbols
*, 17
*=, 21
+, 17
++, 18
+=, 21
/, 17
/* */, 16
//, 16
/=, 21
=, 16, 17, 19

struct, 42
= and structs, 42
==, 19
#include, 5
%, 17
&, 20

address-of operator, 57
&&, 20
-, 17
-=, 21
--, 18
^, 20
~, 20
\* (pointer declaration), 56
\* (pointer dereference), 57
|, 20
||, 20
>, 19
>=, 19
>>, 20
<, 19
<=, 19
<<, 20

A
abs, 83
address space, 55
address-of operator

&, 57
pointers, 57

arithmetic operations, 17

int versus float arithmetic, 18
array bounds checking (lack of ), 32
array indexing, 31
array initialization, 31
arrays, 31

multi-dimensional arrays, 34
assignment, 17, 21
atof, 83
atoi, 83

B
bitwise operations, 20
bool, 15

types, 15
bsearch, 83
buffer overflows and strcpy, 37
bzero, 31

C
C standard library, 79
char, 13

integer, 11
literals, 13
null character, 13

clang
compiling, 7
error messages, 8
gcc, versus, 8

comments, 16
comparing strings, 37
compiler-inserted padding

struct, 42
copying strings, 36
ctype, 38
curly braces, 23

D
dereference operator (\*)

pointers, 57
do-while loop, 25

E
error messages

93



The Book of C, Release 2022.08

clang, 8
exit, 83

F
fclose, 80
fgets, 80
fopen, 80
for loop, 26
free, 83
function declaration, 45
function naming, 47
function parameters, 45, 47
function return values, 45, 47
functions, 45

G
gcc

compiling, 8
gcc, versus

clang, 8
getchar, 5

H
header files, 36
heap, 55

I
if statement, 23
initialization, 16
initialization syntax, 31
initializing

struct, 41
initializing structs, 41
int

char; short; long; long long, 11
integer, 11

int versus float arithmetic
arithmetic operations, 18

integer
char, 11
int, 11
long, 11
long long, 11
short, 11
signed, 11
types, 11
unsigned, 11

isalnum, 38
isalpha, 38, 81
isdigit, 38, 81
islower, 38, 81
ispunct, 38
isspace, 38, 81
isupper, 38, 81

L
literals

char, 13
logical operators, 20
long

integer, 11
long long

integer, 11

M
main, 5
main function, 46
malloc, 83
man pages, 36
memcpy, 82
memmove, 82
memory alignment

struct, 42
memset, 31
multi-dimensional arrays

arrays, 34

N
NULL

pointers, 56
null character

char, 13

O
operator associativity, 79
operator precedence, 79
operators, 79
overflow, 14

P
pass-by-value function parameter semantics,

47
pointer declaration

pointers, 56
pointer initialization

pointers, 56
pointers

address-of operator, 57
dereference operator (\*), 57
NULL, 56
pointer declaration, 56
pointer initialization, 56
swap function, 58

pointers to pointers, 68
postdecrement, 18
postincrement, 18
predecrement, 18
preincrement, 18
printf, 80

94 Index



The Book of C, Release 2022.08

process, 55
putchar, 5

Q
qsort, 83

R
rand, 83
realloc, 83
record types, 41
relational operators, 19

S
scanf, 80
short

integer, 11
signed

integer, 11
sizeof, 32

struct, 42
sizeof and arrays, 32
snprintf, 80
srand, 83
stack, 55
stdbool.h, 15
strcasecmp, 37, 82
strchr, 82
strcmp, 37, 82
strcpy, 36, 82
string initialization, 35
string length, 35
strings, 35
strlcat, 82
strlcpy, 36, 82
strlen, 35, 82
strncasecmp, 37, 82
strncmp, 37, 82
strstr, 82
strtod, 83
strtol, 83
struct, 41

=, 42
compiler-inserted padding, 42
initializing, 41
memory alignment, 42
sizeof, 42

swap function
pointers, 58

switch statement, 24

T
ternary operator, 24
tolower, 38, 81
toupper, 38, 81

truncation, 17
type aliases, 42
typedef, 42
types

bool, 15
integer, 11

U
undefined values, 14, 16
unsigned

integer, 11

V
variable length arrays, 33
void, 47

W
while loop, 25

Index 95


	Introduction: The C Language
	Getting your feet wet in the C
	Hello, somebody
	An aside on C strings and string-based I/O

	Hello, clang
	When clang goes "bang!"
	clang versus gcc


	Basic Types and Operators
	Integer types
	The sizeof keyword
	char literals
	int literals
	Type combination and promotion


	Floating point types
	Boolean type
	Basic syntactic elements
	Comments
	Variables
	Assignment Operator =
	Demotion on assignment

	Arithmetic operations
	Unary Increment Operators: ++ and --
	Pre- and post- variations

	Relational Operators
	Logical Operators
	Bitwise Operators
	Bitwise operation example

	Other Assignment Operators


	Control Structures
	if Statement
	The conditional expression (ternary operator)
	switch statement
	while loop
	do-while loop
	for loop
	break
	continue
	Statement labels and goto


	Arrays and Strings
	Arrays
	Array initialization
	sizeof and arrays
	No array bounds checking!
	Variable length arrays

	Multidimensional Arrays
	C Strings
	Getting the length of a string
	Copying strings
	Comparing strings
	Another example


	Aggregate Data Structures
	The C struct
	Initializing structs
	Copying structs
	Arrays of structs and type aliases (typedef)
	Using sizeof with a struct and memory layout of a struct


	Functions
	Function syntax
	main is where it all begins
	Function naming restrictions and conventions

	Data types for parameters and return values
	Parameters to functions are passed by value
	Example 1: an anti-example of swapping two values
	Example 2: passing a struct to and from a function
	Example 3: passing an array to a function
	A longer example

	Storage classes, the stack and the heap

	Pointers and more arrays
	Pointers
	Declaration syntax
	&: Address-of operator
	Dereferencing, or "following" a pointer
	Pointers to struct's
	Example operating system call with pointers: gettimeofday

	Advanced C Arrays and Pointer Arithmetic
	Array/pointer duality
	Pointer arithmetic

	Dynamic memory allocation
	malloc and free
	Memory leaks and dangling pointers
	Advantages and disadvantages of heap-allocated memory
	Advantages to heap allocation
	Disadvantages to heap allocation

	Dynamic Arrays
	C strings revisited
	Linked lists
	Pointers to pointers, etc.


	Program structure and compilation
	The compilation process
	The preprocessing step
	Header (.h) and source (.c) files
	Preprocessor directives
	#include
	#define
	#if
	Multiple #includes
	Invoking the preprocessor

	The compilation step
	The linking phase
	Options for linking
	The main function
	Command-line arguments to a program


	Invariant testing and assert

	C Standard Library Functions
	Precedence and Associativity
	Standard Library Functions
	stdio.h
	ctype.h
	string.h
	stdlib.h

	Thanks
	Copyright
	Indices and tables
	Bibliography
	Index

